
Oracle® Communications Subscriber
Database Server
Provisioning Interface

Release 9.0.0.0.0
F79524-01
April 2023

Oracle Communications Subscriber Database Server Provisioning Interface, Release 9.0.0.0.0

F79524-01

Copyright © 2011, 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 Introduction

1.1 Revision History 1-1

1.2 Overview 1-1

1.3 Scope and Audience 1-1

1.4 Manual Organization 1-1

1.5 My Oracle Support 1-2

2 System Architecture

2.1 System Architecture Overview 2-1

2.2 SDS/HLRR Architecture Overview 2-2

2.3 Customer IT and Ops 2-2

2.3.1 Web GUI 2-3

2.3.2 Provisioning System 2-3

2.3.3 Query System 2-3

2.3.4 FTP Server 2-3

2.3.5 SNMP Manager 2-3

2.4 Primary Provisioning Site 2-3

2.4.1 Active SDS Server 2-4

2.4.2 Standby SDS Server 2-4

2.4.3 Query Server 2-4

2.5 Disaster Recovery Provisioning Site 2-5

2.6 DP SOAM 2-5

2.7 Data Processors 2-5

3 Interface Description

3.1 Provisioning Interface Overview 3-1

3.2 Customer Provisioning System to SDS Overview 3-2

3.2.1 XML Data Server 3-2

3.2.2 SOAP Server 3-3

3.2.3 Provisioning Clients 3-3

3.3 Security 3-4

iii

3.3.1 Client Server IP Address White List 3-4

3.3.2 Secure Connection Using TLS 3-4

3.3.2.1 TLS Certificates and Public/Private Key Pairs 3-5

3.3.2.2 Supported TLS Cipher Suites 3-6

3.4 Multiple Session Connectivity 3-6

3.5 Request Queue Management 3-7

3.6 Syncronous/Asyncronous Mode 3-7

3.7 Message Processing (Transactions) 3-7

3.7.1 Transaction Modes 3-8

3.7.1.1 Normal Database Transaction Mode 3-8

3.7.1.2 Block Transaction Mode 3-9

3.7.1.3 Single Database Transaction Mode 3-10

3.7.2 ACID-Compliant Transactions 3-10

3.7.2.1 Atomicity 3-10

3.7.2.2 Consistency 3-10

3.7.2.3 Isolation 3-10

3.7.2.4 Durability 3-10

3.8 Data Import 3-11

3.8.1 Provisioning Data Import (XML) 3-13

3.8.2 Provisioning Data Import (CSV) 3-14

3.8.2.1 CSV Data Import for Subscribers 3-18

3.9 Data Export 3-19

3.10 Relaying Data to the HLR Router 3-21

3.10.1 PDB Relay 3-21

3.10.2 Bulk Load 3-21

3.11 Measurements 3-22

3.12 Key Performance Indicators 3-27

3.13 Alarms 3-32

3.14 Events 3-39

4 SOAP Message Definitions

4.1 Message Conventions 4-1

4.2 SOAP Request Messages 4-2

4.3 SOAP Response Messages 4-4

4.3.1 Successful SOAP Subscriber Commands 4-6

4.4 List of Request Operations 4-7

4.5 Start Transaction 4-7

4.5.1 Request 4-7

4.5.2 Response 4-8

4.5.3 Examples 4-9

iv

4.6 Commit Transaction 4-11

4.6.1 Request 4-11

4.6.2 Response 4-11

4.6.3 Examples 4-12

4.7 Rollback Transaction 4-13

4.7.1 Request 4-13

4.7.2 Response 4-13

4.7.3 Examples 4-14

4.8 Insert Subscriber 4-15

4.8.1 Subscriber and Routing Data Concepts 4-15

4.8.2 Insert Subscriber Request 4-15

4.8.3 Insert Subscriber Response 4-18

4.8.4 Insert Subscribers Examples 4-19

4.9 Update Subscriber 4-23

4.9.1 Subscriber and Routing Data 4-23

4.9.2 Request 4-24

4.9.3 Response 4-29

4.9.4 Examples 4-30

4.10 Delete Subscriber 4-38

4.10.1 Request 4-38

4.10.2 Response 4-40

4.10.3 Examples 4-41

4.11 Read Subscriber 4-43

4.11.1 Request 4-43

4.11.2 Response 4-45

4.11.3 Examples 4-50

4.12 Update Subscriber NAI 4-52

4.12.1 Request 4-52

4.12.2 Response 4-54

4.12.3 Examples 4-55

4.13 Delete Subscriber NAI 4-57

4.13.1 Request 4-57

4.13.2 Response 4-58

4.13.3 Examples 4-59

4.14 Read Subscriber NAI 4-60

4.14.1 Request 4-60

4.14.2 Response 4-61

4.14.3 Examples 4-64

4.15 Message Flow Example Sessions 4-66

4.15.1 Single Command Transaction 4-66

4.15.2 Multiple Commands Transaction Committed 4-68

v

4.15.3 Multiple Commands Transaction Rolled Back 4-71

5 XML Message Definitions

5.1 Message Conventions 5-1

5.2 XML-based Interface 5-2

5.3 Transaction ID 5-3

5.4 XML Response Messages 5-3

5.4.1 Update and Delete Subscriber Command 5-5

5.5 Supported Request Messages 5-6

5.6 Start Transaction 5-7

5.6.1 Request 5-7

5.6.2 Response 5-8

5.6.3 Examples 5-9

5.7 Commit Transaction 5-10

5.7.1 Request 5-10

5.7.2 Response 5-10

5.7.3 Examples 5-11

5.8 Rollback Transaction 5-12

5.8.1 Request 5-12

5.8.2 Response 5-12

5.8.3 Examples 5-13

5.9 Block Transactions 5-13

5.9.1 Request 5-14

5.9.2 Response 5-15

5.9.3 Examples 5-17

5.10 Insert Subscriber 5-18

5.11 Update Subscriber 5-19

5.11.1 Subscriber and Routing Data 5-19

5.11.2 Request 5-19

5.11.3 Response 5-23

5.11.4 Examples 5-25

5.12 Delete Subscriber 5-30

5.12.1 Request 5-30

5.12.2 Response 5-33

5.12.3 Examples 5-34

5.13 Read Subscriber 5-36

5.13.1 Request 5-36

5.13.2 Response 5-38

5.13.3 Examples 5-43

5.14 Update Subscriber NAI 5-45

vi

5.14.1 Request 5-45

5.14.2 Response 5-47

5.14.3 Examples 5-48

5.15 Delete Subscriber NAI 5-50

5.15.1 Request 5-50

5.15.2 Response 5-51

5.15.3 Examples 5-52

5.16 Read Subscriber NAI 5-53

5.16.1 Request 5-53

5.16.2 Response 5-54

5.16.3 Examples 5-56

5.17 Update Domain 5-58

5.17.1 Request 5-58

5.17.2 Response 5-60

5.17.3 Examples 5-61

5.18 Delete Domain 5-63

5.18.1 Request 5-63

5.18.2 Response 5-64

5.18.3 Examples 5-65

5.19 Read Domain 5-66

5.19.1 Request 5-66

5.19.2 Response 5-67

5.19.3 Examples 5-69

5.20 Message Flow Example Sessions 5-71

5.20.1 Single Command Transaction 5-71

5.20.2 Multiple Commands Transaction Committed 5-75

5.20.3 Multiple Commands Transaction Rolled Back 5-77

5.20.4 Block Transaction Committed 5-79

5.20.5 Block Transaction Rolled Back 5-81

A SDS Response Message Error Codes

A.1 SDS Response Message Error Codes A-1

B XML/SOAP Interface System Variables

B.1 XML/SOAP Interface System Variables B-1

vii

C Database Object Model

C.1 Database Object Model C-1

viii

List of Figures

2-1 SDS Architecture Overview 2-1

2-2 SDS/HLRR Architecture Overview 2-2

C-1 SDS Provisioning Database Object Model C-1

ix

List of Tables

3-1 Data Provisioning Interfaces 3-1

3-2 TLS X.509 Certificate and Key PEM-encoded Files 3-5

3-3 TLS Supported Cipher Suites 3-6

3-4 Import Log File Parameters 3-12

3-5 Supported Database Requests for XML Import Files 3-14

3-6 CSV Import Formats 3-15

3-7 CSV Import Fields 3-17

3-8 SDS Measurements 3-22

3-9 Provisioning Interface KPI Measurements 3-28

3-10 Process-based KPIs 3-30

3-11 Alarms for Provisioning Group 3-32

3-12 Alarms for EPA Group 3-39

3-13 Events 3-39

4-1 Message Conventions 4-1

4-2 Request Message Parameters (SOAP) 4-3

4-3 Response Message Parameters (SOAP) 4-5

4-4 Supported SOAP Requests 4-7

4-5 <startTransactionRequest> Parameters (SOAP) 4-8

4-6 <startTransactionResponse> Error Codes (SOAP) 4-9

4-7 <commitResponse> Error Codes (SOAP) 4-12

4-8 <rollback> Response Error Codes (SOAP) 4-14

4-9 <insertSubscriberRequest> Parameters (SOAP) 4-17

4-10 <insertSubscriberResponse> Error Codes (SOAP) 4-19

4-11 <updateSubscriberRequest> Parameters (SOAP) 4-28

4-12 <updateSubscriberResponse Error Codes (SOAP) 4-30

4-13 <deleteSubscriberRequest> Parameters (SOAP) 4-39

4-14 <deleteSubscriberResponse> Error Codes (SOAP) 4-40

4-15 <readSubscriberRequest> Parameters (SOAP) 4-45

4-16 <readSubscriberResponse> Parameters (SOAP) 4-48

4-17 <readSubscriberResponse> Error Codes (SOAP) 4-49

4-18 <updateSubscriberNaiRequest> Parameters (SOAP) 4-54

4-19 <updateSubscriberNaiResponse> Error Codes (SOAP) 4-55

4-20 <deleteSubscriberNaiRequest> Parameters (SOAP) 4-58

4-21 <deleteSubscriberNaiResponse> Error Codes (SOAP) 4-59

4-22 <readSubscriberNaiRequest> Parameters (SOAP) 4-61

x

4-23 <readSubscriberNaiResponse> Parameters (SOAP) 4-62

4-24 <readSubscriberNaiResponse> Error Codes (SOAP) 4-63

4-25 Single Command Transaction Message Flow Example (SOAP) 4-67

4-26 Multiple Commands Transaction Committed Message Flow Example (SOAP) 4-68

4-27 Multiple Commands Transaction Rolled Back Message Flow Example (SOAP) 4-71

5-1 Message Conventions 5-1

5-2 Response Message Parameters (XML) 5-5

5-3 Supported XML Data Server Requests 5-6

5-4 <startTransaction> Parameters (XML) 5-8

5-5 <startTransactionResp> Error Codes (XML) 5-9

5-6 <commit> Request Parameters (XML) 5-10

5-7 <commitResp> Error Codes (XML) 5-11

5-8 <rollback> Parameters (XML) 5-12

5-9 <rollbackResp> Error Codes (XML) 5-13

5-10 <tx> Request Parameters (XML) 5-15

5-11 <txResp> Parameters (XML) 5-16

5-12 <txResp> Error Codes (XML) 5-16

5-13 <updateSubscriber> Request Parameters (XML) 5-22

5-14 <updateSubscriberResp> Error Codes (XML) 5-24

5-15 <deleteSubscriber> Request Parameters (XML) 5-32

5-16 <deleteSubscriberResp> Error Codes (XML) 5-33

5-17 <readSubscriber> Request Parameters (XML) 5-37

5-18 <readSubscriberResp> Parameters (XML) 5-41

5-19 <readSubscriberResp> Error Codes (XML) 5-43

5-20 <updateSubscriberNai> Request Parameters (XML) 5-46

5-21 <updateSubscriberNaiResp> Error Codes (XML) 5-48

5-22 <deleteSubscriberNai> Request Parameters (XML) 5-51

5-23 <deleteSubscriberNaiResp> Error Codes (XML) 5-52

5-24 <readSubscriberNai> Request Parameters (XML) 5-53

5-25 <readSubscriberNaiResp> Parameters (XML) 5-55

5-26 <readSubscriberNaiResp> Error Codes (XML) 5-56

5-27 <updateDomain> Parameters (XML) 5-59

5-28 <updateDomainResp> Error Codes (XML) 5-61

5-29 <deleteDomain> Parameters (XML) 5-63

5-30 <deleteDomainResponse> Error Codes (XML) 5-65

5-31 <readDomain> Parameters (XML) 5-66

5-32 <readDomainResp> Parameters (XML) 5-68

xi

5-33 <readDomainResp> Error Codes (XML) 5-69

5-34 Single Command Transaction (XML) 5-72

5-35 Multiple Commands Transaction Committed Message Flow Example (XML) 5-75

5-36 Multiple Commands Transaction Rolled Back Message Flow Example (XML) 5-77

5-37 Block Transaction Committed Message Flow Example 5-80

5-38 Block Transaction Rolled Back Message Flow Example 5-82

A-1 SDS Response Message Error Codes A-1

B-1 XML/SOAP Interface System Variables B-1

C-1 MsisdnBlacklist Table Attributes C-1

C-2 ImsiBlacklist Table Attributes C-2

C-3 Msisdn Table Attributes C-2

C-4 Imsi Table Attributes C-2

C-5 MsisdnPrefix Table Attributes C-2

C-6 ImsiPrefix Table Attributes C-2

C-7 NaiUser Table Attributes C-3

C-8 WildcardNaiUser Table Attributes C-3

C-9 Destination Table Attributes C-3

C-10 DestinationMap Table Attributes C-3

C-11 NaiHost Table Attributes C-4

C-12 DomainIdentifier Table Attributes C-4

C-13 LocalIdentifier Table Attributes C-4

C-14 Subscriber Table Attributes C-4

C-15 AccountToSubscriber Table Attributes C-5

C-16 MsisdnToSubscriber Table Attributes C-5

C-17 ImsiToSubscriber Table Attributes C-5

C-18 SubscriberToExternalId Table Attributes C-5

C-19 Destination List for Routing Entities C-6

xii

1
Introduction

This chapter contains general information about the XML/SOAP provisioning documentation,
the organization of this manual, and how to get technical assistance.

1.1 Revision History

Date Description

April 2022 No changes done in this release.

January 2017 Accessibility changes throughout.

1.2 Overview
This documentation:

• Describes Subscriber Database Server (SDS) Provisioning Interfaces that can be used
by local and remote provisioning client applications. Remote applications include
independent Customer Provisioning Systems (CPS), which are supplied and maintained
by the customer. Through XML or SOAP interfaces, the CPS can add, change, delete, or
retrieve information about any IMSI/MSISDN/NAI association.

• Describes SDS SOAP, XML, and import/export interfaces.

• Provides information about XML and SOAP message definitions.

• Explains the organization of, and how to use, the documentation.

1.3 Scope and Audience
This manual is intended for customers, customer service, software development, product
verification organizations, and any other personnel who need to understand the XML or
SOAP interfaces. Users of this manual and the others in the SDS family of documents must
have a working knowledge or telecommunications and network installations.

1.4 Manual Organization
This document is organized into the following chapters:

• Introduction contains general information about the SDS documentation, the organization
of this manual, and how to get technical assistance.

• System Architecture gives an overview of XML/SOAP system architecture.

• Interface Description provides a high level overview of the interface provided by the XML
Data Server (XDS) and the SOAP server.

• SOAP Message Definitions describes the SOAP operations syntax and parameters.

1-1

• XML Message Definitions describes XML requests and responses syntax and
parameters.

• SDS Response Message Error Codes describes the XML/SOAP error codes that
are returned by the XDS/SOAP server.

• XML/SOAP Interface System Variables describes the XML/SOAP interfaces that
have a set of system variables that affect the operation as it runs.

• Database Object Model describes the database object model and shows all tables
associated with SDS provisioning.

1.5 My Oracle Support
My Oracle Support (https://support.oracle.com) is your initial point of contact for all
product support and training needs. A representative at Customer Access Support can
assist you with My Oracle Support registration.

Call the Customer Access Support main number at 1-800-223-1711 (toll-free in the
US), or call the Oracle Support hotline for your local country from the list at http://
www.oracle.com/us/support/contact/index.html. When calling, make the selections in
the sequence shown below on the Support telephone menu:

1. Select 2 for New Service Request.

2. Select 3 for Hardware, Networking and Solaris Operating System Support.

3. Select one of the following options:

• For Technical issues such as creating a new Service Request (SR), select 1.

• For Non-technical issues such as registration or assistance with My Oracle
Support, select 2.

You are connected to a live agent who can assist you with My Oracle Support
registration and opening a support ticket.

My Oracle Support is available 24 hours a day, 7 days a week, 365 days a year.

Chapter 1
My Oracle Support

1-2

https://support.oracle.com
http://www.oracle.com/us/support/contact/index.html
http://www.oracle.com/us/support/contact/index.html

2
System Architecture

This chapter provides an overview of XML/SOAP system architecture.

2.1 System Architecture Overview
Figure 2-1 provides an overview of the SDS architecture.

Figure 2-1 SDS Architecture Overview

The SDS system consists of a Primary Provisioning Site, a Disaster Recovery (DR)
Provisioning Site, and up to 24 Signaling Site servers with redundant data processor Site
Operation Administration and Maintenance (SOAM) servers and up to 2 data processing
blades. Each provisioning site has an active/standby pair of servers in a High Availability (HA)
configuration and a third server configured as a Query server.

The SDS system is built on a platform that provides a variety of services such as site-based
GUI, HA capabilities (active/standby switchover and DR switchover), and database
functionality (replication, backup, restore).

Every server within the SDS system collects measurements, alarms, and events data. Every
server sends its traps directly to the Customer SNMP Manager.

2-1

Every server can also collect measurement data. Data processing measurements are
sent to the active SOAM server, which sends the measurements from all data
processing servers and itself to the Active SDS server on the Primary Provisioning
Site. The measurements can be viewed on the GUIs for the active SDS server on the
Primary Provisioning Site and the data processing SOAM server on the Signaling Site.

2.2 SDS/HLRR Architecture Overview
Figure 2-2 shows a high-level overview for various products.

Figure 2-2 SDS/HLRR Architecture Overview

The SDS for HLRR components consists of a SDS Primary Provisioning site, SDS DR
Provisioning site, HLRR Primary NO site, and HLRR Disaster Recovery NO site. The
SDS sites replicate data to other SDS systems (such as Query server and data
processing SOAM). The HLRR sites replicate data to other HLRR systems (such as
the Query server and SOAM).

The SDS Primary Provisioning site relays specific data to the HLRR Primary NO site
and can send data to the HLRR DR NO site. The SDS DR Provisioning site can also
relay specific data to the HLRR Primary or DR NO site, and does so if it becomes the
SDS Primary Provisioning site.

The type of data relayed and additional information on this process is described in
Relaying Data to the HLR Router. The data is relayed over the HLRR PDBI interface
by the pdbrelay and pdbaudit (for remote audit) processes.

2.3 Customer IT and Ops
The Customer IT and Ops layer contain the customer provisioning system, query
system, Web GUI, FTP server, and SNMP agent. These components belong to the

Chapter 2
SDS/HLRR Architecture Overview

2-2

customer and are external to the Oracle SDS system. The customer is responsible for
configuring their systems to connect to the SDS system.

2.3.1 Web GUI
The customer uses the Virtual IP address (VIP) for the active SDS server on the Primary
Provisioning Site to access the SDS GUI and the VIP for the appropriate SOAM to access the
SOAM GUI for the Signaling Site server.

To connect to the SDS application:

1. Launch Internet Explorer 7.x, 8.x, or 9.x and connect to the VIP assigned to the active
SDS server on the Primary Provisioning Site.

2. Login to the GUI using your username and password.

The VIP address of the desired server is used to connect to the active SDS server on the DR
Provisioning Site or to an SOAM server on a Signaling Site. Data can only be viewed on
these servers.

2.3.2 Provisioning System
The customer provisioning system must be configured so that it can have SOAP and/or XML
connections to the Primary and DR Provisioning sites. The provisioning system establishes
active connections to the active site (usually the Primary Provisioning Site). The VIP
addresses are used to connect to the Primary and DR Provisioning sites. The SOAP and/or
XML ports can also be configured.

2.3.3 Query System
MySQL client must be installed on the customer system. The customer system can connect
to the Query servers on the Primary and/or DR Provisioning Sites using the Query server IP
address and IP port=15616.

2.3.4 FTP Server
The customer FTP server is used by the import and export processes and to store
performance data.

2.3.5 SNMP Manager
The customer SNMP Manager is used to accept traps for the servers. All servers send SNMP
traps to the SNMP Manager for alarms and events.

2.4 Primary Provisioning Site
The Primary Provisioning Site is used for SDS OAM. All provisioning is done using a Web
GUI or from the customer provisioning system, using a SOAP and/or XML interface.

The Primary Provisioning Site uses three rack mount servers:

• Active SDS server

• Standby SDS server

• Query server

Chapter 2
Primary Provisioning Site

2-3

Each server has the identical software but a different role. Only the SDS server runs
the XML Data Server (XDS) and SOAP server applications. These applications run
within the same process referred to as XDS.

2.4.1 Active SDS Server
The active SDS server on the Primary Provisioning Site accepts input from the Web
GUI and from a SOAP and/or XML interface. The active SDS server is responsible for
applying all database updates (adds, changes, and deletes) and replicating
appropriate updates to the:

• Primary Provisioning Site Standby SDS server

• Primary Provisioning Site Query server

• DR Provisioning Site Active SDS server

• All subtending DP SOAMs at the Signaling Sites

The active SDS server on the Primary Provisioning Site provides a GUI which is used
for configuration, user administration, and viewing of alarms and measurements. The
active SDS server distributes all successful incoming subscriber provisioning data,
independent of source, to all downstream Network Elements (Query server and DP
SOAMs on the Signaling Sites) and the DR Provisioning Site.

To ensure that the database levels of the Network Elements are no more recent than
the database levels of the SDS servers on the Primary and DR Provisioning Sites, the
active SDS Server on the Primary Provisioning Site provisions the active SDS server
on the DR Provisioning Site before updating the Signaling Sites (data processing (DP)
SOAM and DPs).

Both the active and standby SDS servers share a VIP address. The active SDS server
owns the VIP address. If the current standby SDS server becomes active, it acquires
the VIP address.

2.4.2 Standby SDS Server
The standby SDS server receives updates from the active SDS server, keeping the
active SDS server and standby SDS server in sync. If the active SDS server fails, then
the standby SDS server automatically performs a switchover, becomes the active SDS
server, and acquires the VIP address.

2.4.3 Query Server
The SDS Query server provides a secure MySQL interface that allows the customer to
query subscriber data using the previously configured Query System.

The SDS Query server accepts replicated subscriber data from the active SDS server
and stores it in a customer-accessible MySQL database. The SDS Query server
provides a free-form read-only query capability using the MySQL interface and limited
MySQL user management. The SDS Query server is located in the same physical
frame as the SDS server components at the Primary and DR Provisioning Sites.

Chapter 2
Primary Provisioning Site

2-4

2.5 Disaster Recovery Provisioning Site
The Disaster Recovery (DR) Provisioning Site is an SDS Provisioning Site. Configuring a DR
Provisioning Site is optional. If the site is configured, then a geo-diverse DR Provisioning site
is recommended.

The DR Provisioning Site has the same hardware configuration and network accessibility as
the Primary Provisioning Site. The Primary and DR Provisioning Sites have different VIP
addresses for their active SDS servers.

The active SDS server on the DR Provisioning Site accepts updates from the Active SDS
server on the Primary Provisioning Site. The DR Provisioning Site does not have an active
SOAP or XML connection opened. This connection can be established when the DR
Provisioning Site is promoted to be the Primary Provisioning Site.

DR Provisioning Site databases are kept current through real-time replication of subscriber
and application data from the active SDS server on the Primary Provisioning Site. Under
normal operating conditions, the active SDS server on the DR Provisioning Site does not
provision any downstream systems. If this server is made Active, then the server takes over
all functions of the active SDS server on the Primary Provisioning site, including the
provisioning interfaces and database replication to subtending SOAMs. If the active and
Standby SDS servers on the Primary Provisioning Site fail, then the customer must manually
force a switchover to the active SDS server on the DR Provisioning Site.

2.6 DP SOAM
The data processing (DP) SOAM is the single point of entry for the replication stream of
subscriber data into a Signaling Site. The DP SOAM consists of a combination of an active
and a standby server running the DP SOAM application and operating in a high availability
configuration.

The active DP SOAM server receives subscriber data replicated from the Active SDS server
on the Primary Provisioning Site and replicates the data to the standby DP SOAM server and
to all subtending data processors located in the same physical frame. Provisioning data,
alarms, and measurements can be viewed or queried using a GUI connected to the VIP
address for the DP SOAM.

2.7 Data Processors
Data Processors (DPs) are servers configured for DP functionality. These servers accept
replicated subscriber data from the local DP SOAM and store it in a subscriber database. The
DPs are used for processing queries from the Message Processor for destination address
resolution. The DP receives database queries that include user identities such as MSISDN,
IMSI, URI, and destination types and returns the resolved destination address FQDN and/or
realm values.

Each Signaling Site can support up to 10 DP servers deployed in a single frame to scale
query capacity. Two DP servers are supported currently.

Each DP server contains a copy of the same SDS data, configured in an active/active mode.
The Message Processor is responsible for load-balancing requests across DP servers.

Chapter 2
Disaster Recovery Provisioning Site

2-5

Each DP server runs on an HP C-Class blade. The DP server is configured in an
active/active mode and is deployed at each Signaling Site on blades with n+m
redundancy. Initially, n=1 and m=1.

A GUI is not available for DP servers. A GUI can be connected to the DP SOAM VIP
address to view or query provisioning data, alarms, and measurements.

Chapter 2
Data Processors

2-6

3
Interface Description

This chapter provides an overview of the interface provided by the XML data server and the
SOAP server.

3.1 Provisioning Interface Overview
Data can be provisioned or exported using one of the following interfaces:

• GUI – Add, change, delete, and query routing-related data and internal tables. Internal
tables contain information such as NPA-NXX split data and export schedules.

• SOAP – Add, change, delete, and read MSISDN, IMSI and NAI user data.

• XML – Add, change, delete, and read MSISDN, IMSI and NAI user data.

• SQL – View or query routing-related data. This interface is provided by the SDS Query
server.

• Import – Import data in CSV or XML format.

• Export – Export data in CSV, XML, or HLRR format.

• PDB Relay – Add, change, and delete MSISDN and IMSI routing entities with
destinations that have an E.164 network entity value on SDS. Automatically send those
provisioning commands from SDS to HLR Router (HLRR).

The method used to provision data varies, depending on the type of data. All data can be
provisioned using the GUI. Table 3-1 shows which interfaces are available for each type of
data.

Table 3-1 Data Provisioning Interfaces

Data Type GUI SOAP/XML
XML Import/

Export
CSV Import/

Export

HLRR
Export and
PDB Relay SQL Query

MSISDN yes yes yes yes yes yes

IMSI yes yes yes yes yes yes

NAI User yes yes yes yes no yes

Wildcard NAI
User

yes no no yes no yes

NAI Host yes no no yes no yes

Destination yes no no yes no yes

Destination
Map

yes no no no no yes

MSISDN
Prefix

yes no no yes no yes

IMSI Prefix yes no no yes no yes

MSISDN
Blacklist

yes no no yes no yes

3-1

Table 3-1 (Cont.) Data Provisioning Interfaces

Data Type GUI SOAP/XML
XML Import/

Export
CSV Import/

Export

HLRR
Export and
PDB Relay SQL Query

IMSI Blacklist yes no no yes no yes

Subscriber yes yes yes yes no yes

Note:

Only MSISDN and IMSI routing entities with destinations that have an E.164
network entity value can be relayed or exported in HLRR format.

A history of the commands and their responses can be viewed from the SDS GUI. We
recommend you see the SDS Online Help for more information. All provisioning
requests are stored in the Command Log for all interfaces.

3.2 Customer Provisioning System to SDS Overview
Each SDS server has identical software. Two of the applications that exist on each
SDS server are the XML Data server and the SOAP server. These applications run
within the same process named XDS.

The customer's provisioning system must be configured so it can have SOAP and/or
XML connections to the Primary and Disaster Recovery (DR) Provisioning sites by
using the Virtual IP (VIP) address for each site. The SOAP and/or XML ports are also
configurable.

The customer's provisioning system only establishes active connections to the active
site (usually the Primary Provisioning Site). In the event of a failure of the active SDS
server, the Standby SDS server is activated, and the VIP is moved over to that server.

In the event of a failure of the Primary Provisioning Site, the DR Site becomes active.
The Client Provisioning Systems must manually switchover from the Primary SDS VIP
to the DR SDS VIP.

3.2.1 XML Data Server
The XML Data server runs in the XML Data server (XDS) process on the active SDS
server on the Primary Provisioning Site. The XML Data server implements XML over a
TCP interface.

Each XML request and response message (see XML Message Definitions) consists of
a 4-byte binary length value, followed by the indicated number of ASCII characters that
form the XML request. There is no need to terminate the XML request with any
terminating character(s).

The XML Data server is responsible for:

• Accepting and authorizing XML/TCP provisioning client connections.

• Processing and responding to XML requests received from provisioning clients.

Chapter 3
Customer Provisioning System to SDS Overview

3-2

• Updating and maintaining the provisioning database, located on the active SDS server on
the Primary Provisioning Site. MSIDN, IMSI, and NAI user routing entities can be read
and provisioned, including destinations for the routing entities.

Note:

All specified destinations and NAI Hosts must already be defined (using the
GUI or CSV import).

XML provisioning can occur via an XML client or an XML import file. SDS also supports
exporting MSISDN, IMSI, and NAI User data into an export file.

3.2.2 SOAP Server
The SOAP server runs in the XDS process on the active SDS server on the Primary
Provisioning Site. The SOAP server implements SOAP over an HTTP interface.

The SOAP server is responsible for:

• Accepting and authorizing SOAP/HTTP provisioning client connections.

• Processing and responding to SOAP requests received from provisioning clients.

• Updating and maintaining the provisioning database, located on the Active SDS serveron
the Primary Provisioning Site. MSISDN, IMSI, and NAI user routing entities can be read
and provisioned, including the destinations for these routing entities.

Note:

All specified destinations and NAI Hosts must already be defined (using the
GUI or CSV import).

3.2.3 Provisioning Clients
The provisioning clients, which are owned by the customer, establish TCP/IP connections to
the XML Data server or SOAP server, using the VIP for the active SDS server on the Primary
Provisioning Site. The provisioning clients use XML or SOAP to send requests to manipulate
and query data in the Provisioning Database and then process the XML or SOAP response
messages.

Provisioning clients must re-establish connections with the XML Data server or SOAP server
using the Primary SDS VIP on switchover from the Primary Active to Standby SDS server.
Provisioning clients must also redirect connections to the Secondary VIP on switchover from
the Primary SDS Site to the DR SDS Site.

Provisioning clients must run a timeout for the response to a request, in case a response is
not sent. If no response is received, a client drops and re-establishes the connection before
trying again.

Chapter 3
Customer Provisioning System to SDS Overview

3-3

Note:

By dropping the connection, any transaction that is in progress on that
connection is automatically rolled back. Consequently, the entire transaction
must be started and resent again.

Provisioning clients are expected to re-send XML/SOAP requests for database
manipulation requests that resulted in a temporary error or for which no responses
were received.

The SDS GUI is used to configure connections to the provisioning clients. We
recommend you see the SDS Online Help for more information.

3.3 Security
The following forms of security are provided for securing connections between the
XML/SOAP Interfaces and provisioning clients in an unsecure/untrusted network:

• Client server IP Address White List

• Secure Connections using SSLv3 (SOAP Interface only)

3.3.1 Client Server IP Address White List
The XML/SOAP Interfaces maintain a list of server IP addresses that clients can use
to establish a TCP/IP connection. Each IP address on the list has read-only or read/
write permissions. The SDS GUI is used to administer the list. We recommend you see
the SDS Online Help for more information.

Any connect request coming from an IP address that is not on the list is denied, and
the connection is immediately closed. If an IP address is removed from the list, then
any active connection established from that IP address is immediately closed.

3.3.2 Secure Connection Using TLS
The SOAP server supports secure connections between provisioning clients and the
SOAP server using the Transport Layer Security (TLS) protocol.

TLS is an industry standard protocol for clients needing to establish secure (TCP-
based) TLS network connections.

TLS capabilities address several fundamental concerns about communication over
TCP/IP networks:

• TLS server authentication allows a client application to confirm the identity of the
server application. The client application through TLS uses standard public-key
cryptography to verify that the server's certificate and public key are valid and have
been signed by a trusted certificate authority (CA) that is known to the client
application.

• TLS client authentication allows a server application to confirm the identity of the
client application. The server application through TLS uses standard public-key
cryptography to verify that the client's certificate and public key are valid and have
been signed by a trusted CA that is known to the server application.

Chapter 3
Security

3-4

• An encrypted TLS connection requires all information being sent between the client and
server application to be encrypted. The sending application is responsible for encrypting
the data and the receiving application is responsible for decrypting the data. In addition to
encrypting the data, TLS provides message integrity, which provides a means to
determine if the data has been tampered with since it was sent by the partner application.

Depending on whether the SOAP server is configured to operate in a secure or unsecure
mode, provisioning clients can connect using unsecure or secure connections to the SOAP
server TCP/TLS listening port. The SDS GUI is used to configure this functionality. We
recommend you see the SDS Online Help for more information.

Note:

An TLS connection is slower than an unsecure TCP/IP connection due to providing
adequate security.

3.3.2.1 TLS Certificates and Public/Private Key Pairs
TLS connections require digital certificates. Certificates rely on asymmetric encryption (or
public-key encryption) algorithms that have two encryption keys (a public key and a private
key). A certificate owner can show the certificate to another party as proof of identity. A
certificate consists of its owner's public key. Any data encrypted with this public key can be
decrypted only using the corresponding, matching private key, which is held by the owner of
the certificate.

Oracle issues Privacy Enhanced Mail (PEM)-encoded TLS X.509v3 certificates and
encryption keys to the SOAP server and provisioning clients needing to establish an TLS
connection with the SOAP server. These files can be found on the SDS server under /usr/
TKLC/sds/ssl. These files should be copied to the server running the provisioning client.

Table 3-2 TLS X.509 Certificate and Key PEM-encoded Files

Certificate and Key PEM-Encoded Files Description

tklcCaCert.pem Self-signed trusted root Certification Authority
(CA) X.509v3 certificate.

serverCert.pem The SOAP servers X.509v3 certificate and 2,048-
bit RSA public key digitally signed by Certification
Authority (CA) using SHA-1 message digest
algorithm.

serverKey.nopass.pem The SOAP servers corresponding, matching
2,048-bit RSA private key without passphrase
digitally signed by Certification Authority (CA)
using SHA-1 message digest algorithm.

clientCert.pem Provisioning client's X.509v3 certificate and 2,048-
bit RSA public key digitally signed by Certification
Authority (CA) using SHA-1 message digest
algorithm.

clientKey.nopass.pem Provisioning client's corresponding, matching
2,048-bit RSA private key without passphrase
digitally signed by Certification Authority (CA)
using SHA-1 message digest algorithm.

Chapter 3
Security

3-5

Provisioning clients are required to send an TLS authenticating X.509v3 certificate
when requested by the SOAP server during the secure connection handshake protocol
for mutual (two-way) authentication. If the provisioning client does not submit a
certificate that is issued/signed by Certification Authority (CA), it will not be able to
establish a secure connection with the SOAP server.

3.3.2.2 Supported TLS Cipher Suites
A cipher suite is a set/combination of lower-level algorithms that an TLS connection
uses to do authentication, key exchange, and stream encryption. The following table
lists the set of cipher suites that are supported by the SOAP server to secure an TLS
connection with provisioning clients. The cipher suites are listed and selected for use
in the order of key strength, from highest to lowest. This ensures that during the
handshake protocol of an TLS connection, cipher suite negotiation selects the most
secure suite possible from the list of cipher suites the client wishes to support, and if
necessary, back off to the next most secure, and so on down the list.

Note:

Cipher suites containing anonymous DH ciphers, low bit-size ciphers
(currently those using 64 or 56 bit encryption algorithms but excluding export
cipher suites), export-crippled ciphers (including 40 and 56 bits algorithms),
or the MD5 hash algorithm are not supported due to their algorithms having
known security vulnerabilities.

Table 3-3 TLS Supported Cipher Suites

Cipher Suite Key Exchange
Signing/
Authentication

Encryption
(Bits)

MAC (Hash)
Algorithms

AES256-SHA RSA RSA AES (256) SHA-1

DES-CBC3-SHA RSA RSA 3DES (168) SHA-1

AES128-SHA RSA RSA AES (128) SHA-1

KRB5-RC4-SHA KRB5 KRB5 RC4 (128) SHA-1

RC4-SHA RSA RSA RC4 (128) SHA-1

KRB5-DES-
CBC3-SHA

KRB5 KRB5 3DES (168) SHA-1

3.4 Multiple Session Connectivity
Multiple provisioning systems may be connected via the XML/SOAP Interfaces
simultaneously. All systems can issue commands that do read or write. If more than
one system requests to start a transaction, or issues an update/delete request,
contention for write access will be handled as follows:

• The first system to submit a write request will be granted access, if it is authorized
for write access.

• If a second system submits a write request while the first transaction is still open, it
will either be immediately rejected with WRITE_UNAVAIL error code, or will be
queued for a specified time out period to wait on the first system’s transaction to
complete.

Chapter 3
Multiple Session Connectivity

3-6

• The time out period can be specified by the user in the start transaction/update/delete
request. Valid value are from 0 to 3600 seconds. If the value is not included or is set to 0,
the second request will be immediately rejected with WRITE_UNAVAIL error code.

• If the time out value is set to any non-zero value, the second start transaction or update/
delete request will be held for that time period before being rejected. If the first user
releases the transaction before the second user’s time out period has expired, the
second user will then be granted write access.

• If a third user submits a start transaction or update/delete request after the second user
with a specified time out period, the third user’s request will be queued behind the second
user’s request. Once the first user releases the transaction, the second user is granted
access. After the second user releases the transaction, the third user is granted access
and so forth. If any user’s time out period expires, that request will be immediately
rejected with WRITE_UNAVAIL error code.

• If the third user sets a time out period longer than the second user, and the second user’s
time out period expires before the first user releases the transaction, the second user’s
request will be dropped from the queue and the third user will move up in the queue.
Thus, if the first user then releases the transaction before the third user’s time out has
expired; the third user will be granted access.

3.5 Request Queue Management
If multiple clients simultaneously issue requests, then each request is queued and processed
in the order received on a per connection basis. The client does not have to wait for a
response from one request before issuing another.

Incoming requests are not prioritized. Multiple requests from a single client are handled on a
first-in, first-out basis. Generally, requests are answered in the order received. Invalid
requests are responded to immediately, despite any other valid requests in the queue.

3.6 Syncronous/Asyncronous Mode
As described in Request Queue Management, a client that sends multiple requests before
waiting for the response from a previous request is not guaranteed to receive the responses
in the order they were sent.

If a client wishes to send a request before waiting for the response to the previous one
(asyncronous mode), then the client must populate the id attribute in the request with a
transaction ID value that will be passed back in the response. The id attribute needs to be
unique enough to the client to correlate a response to a request that was sent. The XML Data
server will return the id passed in the response.

If a client wishes to send a single request and wait for the response before sending another
one (syncronous mode), then the client does not need to populate the id attribute in the
request, because the response will always be for the request last sent. The id attribute can
be populated if desired, and it will be passed back in the response just as in asyncronous
mode.

3.7 Message Processing (Transactions)
All subscription-related requests are performed within the context of a database transaction.
The XML/SOAP Interfaces use a transaction-based API.

Chapter 3
Request Queue Management

3-7

The SDS GUI is used to configure the transaction options. We recommend you see
the SDS Online Help for more information.

3.7.1 Transaction Modes
The XML Interface supports the following database transaction modes:

• Normal Transaction Mode

• Block Transaction Mode

• Single Transaction Mode (default)

The SOAP Interface supports the following database transaction modes:

• Normal Transaction Mode

• Single Transaction Mode (default)

The provisioning client controls which transaction mode will be used by the commands
it sends.

3.7.1.1 Normal Database Transaction Mode
The normal database transaction mode requires an explicit <startTransaction/>
request paired with <commit/> or <rollback/> request to complete the transaction.

A normal sequence of events might be:

• <startTransaction/>
• <updateSubscriber … />
• <.../>
• <updateSubscriber … />
• <commit/>
Or:

• <startTransaction/>
• <updateSubscriber … />
• <.../>
• <updateSubscriber … />
• <rollback/>
All requests within a transaction must be sent on the same TCP/IP connection, for
both XML and SOAP interfaces. If the TCP/IP connection is disconnected when a
transaction is in progress, the transaction is automatically rolled back.

In normal database transaction mode, many updates can be sent and committed to
the database at once when the transaction is completed. This results in a much faster
rate of updates per second.

Transaction integrity is ensured by allowing updates to be aborted or rolled back if
there is an unexpected failure before the transaction is completed. Updates are not
committed to the database until the <commit/> request is issued. If an unexpected
failure occurs, or if the transaction is explicitly aborted by the <rollback/> request,

Chapter 3
Message Processing (Transactions)

3-8

the database is maintained in the state it was in prior to the beginning of the transaction.

Data across all requests performed inside a transaction is consistent. A transaction can only
be opened by one client connection at a time, preventing multiple clients from updating the
database at the same time.

Note:

A block transaction (<tx> … </tx>) cannot be sent during a normal database
transaction, for example, after a <startTransaction/> request has been sent
and before a <commit/> or <rollback/> request is sent. If a block transaction
request is sent during this period, then the request is rejected with a
INV_REQ_IN_NORMAL_TX error. This error does not affect or abort the open
transaction.

3.7.1.2 Block Transaction Mode
The block transaction mode requires explicit <tx> tags around all of the requests in a
transaction.

The block transaction is sent as one XML request, and all requests contained within the block
are executed in sequence within a database transaction. If any request fails, then the entire
transaction is automatically rolled back. If all requests are successful, then the transaction is
automatically committed.

If a block transaction fails, then the request within the block that encountered an error will
have the appropriate error code set. All requests after the failed request will have the error
code set to NOT_PROCESSED. Any requests before the failed request will indicate success,
and the number of affected rows.

All transactions must also satisfy limits indicated by the Max Transaction Size, Maximum
Transaction Lifetime, and Transaction Durability Timeout system variables,
which are defined in XML/SOAP Interface System Variables. If any of those limits are
exceeded, the transaction is aborted and automatically rolled back.

Note:

A block transaction cannot be sent in the context of a normal database transaction,
for example, after a <startTransaction/> request has been sent and before a
<commit/> or <rollback/> request is sent. Normal database transaction
requests, such as <startTransaction/>, <commit/> or <rollback/>, cannot
be sent within a block transaction. If any normal requests are sent, then the block
transaction fails with an INV_REQ_IN_BLOCK_TX error.

When incrementing measurements related to block transactions, the whole block is treated
as a single provisioning command. If a block contains four requests (such as
<updateSubscriber>), then the subsequent measurements are incremented by one.

Chapter 3
Message Processing (Transactions)

3-9

3.7.1.3 Single Database Transaction Mode
Single database transaction mode implicitly begins and ends a transaction for each
individual update request.

In single database transaction mode, database manipulation and query requests are
sent without being enclosed by <startTransaction/> and <commit/> requests.

When sending Single Database Transaction Mode update or delete requests, each
command is implicitly done within a transaction by the SDS, such as when sending
<startTransaction/>, <request>, and <commit/> requests. For read requests,
no transaction is used by the SDS.

3.7.2 ACID-Compliant Transactions
The SOAP Interfaces support Atomicity, Consistency, Isolation, and Durability (ACID)-
compliant database transactions which guarantee transactions are processed reliably.

3.7.2.1 Atomicity
Database manipulation requests are atomic. If one database manipulation request in a
transaction fails, all of the pending changes can be rolled back by the client, leaving
the database as it was before the transaction was initiated. However, the client also
has the option to close the transaction, committing only the changes within that
transaction which were executed successfully. If any database errors are encountered
while committing the transaction, all updates are rolled back and the database is
restored to its previous state.

3.7.2.2 Consistency
Data across all requests performed inside a transaction is consistent.

3.7.2.3 Isolation
All database changes made within a transaction by one client are not viewable by any
other clients until the changes are committed by closing the transaction. In other
words, all database changes made within a transaction cannot be seen by operations
outside of the transaction.

3.7.2.4 Durability
Once a transaction has been committed and become durable, it will persist and not be
undone. Durability is achieved by completing the transaction with the persistent
database system before acknowledging commitment. Provisioning clients only receive
SUCCESS responses for transactions that have been successfully committed and
have become durable.

The system recovers committed transaction updates in spite of system software or
hardware failures. If a failure (for example, loss of power) occurs in the middle of a
transaction, the database returns to a consistent state when it is restarted.

Data durability signifies the replication of the provisioned data to different parts of the
system before a response is provided for a provisioning transaction. The following
additive configurable levels of durability are supported:

Chapter 3
Message Processing (Transactions)

3-10

1. Durability to the disk on the active provisioning server (for example, just 1)

2. Durability to the local standby server memory (for example, 1 + 2)

3. Durability to the active server memory at the Disaster Recovery site (for example, 1 + 2 +
3)

3.8 Data Import
SDS provides automatic file-based bulk import of provisioning data. Files from a remote
directory can be imported and the values within the files used to populate the database. The
files can contain data in CSV or XML format. The type of data that can be imported for each
format type is defined in Table 3-1.

Import options are configured using the SDS GUI. We recommend you see the SDS Online
Help for more information.

Imports are not scheduled through the GUI. The imports are initiated by the presence of a file
placed in the Remote Import Directory.

Import files that are placed in the specified location on the remote server are detected within
five minutes and automatically downloaded using SSH File Transfer Protocol (SFTP) to the
file management storage area on the active server. For a file to be imported it must:

• Be named correctly. CSV import files must match the file names shown in xxx XML
import files must have *.xml file extensions.

• Have been placed in the remote directory after the time when the import last ran.

• Not have been previously imported. A file that has already been imported into the local
directory will not be imported again, even if the status is failed. To import a previously
failed file, correct the file as necessary, rename the file, and place the renamed file in the
remote directory.

Once fully downloaded, each file is automatically imported into the Provisioning Database in
the order of their time stamps from the remote server.

The import file is an ASCII text file that contains a series of database manipulation requests.
Each request must be formatted on a single line.

An import log file is created for each file that is imported, and a copy is automatically
uploaded to the same location the import file was downloaded from on the remote server. The
log file has the same name as its corresponding import file with .log appended. Import log
files on the local system are viewable for up to 7 days or until manually removed.

The import log file contains:

• Date and time (in UTC) the import operation started and completed including percentage
of the import file (lines) complete.

• The time started is blank for the imports which are queued, but not yet started. The time
completed is blank for the imports that are in-progress.

• All requests that resulted in failure along with associated error code (value and string
representation), and line of the import file containing the failure.

• Total number of requests successfully committed and failed.

Chapter 3
Data Import

3-11

The format of XML or CSV import logs:

mm/dd/yy hh:mm:ss Started (0 of linesToImport) 0% complete

reqMsg
[error errorValue errorString : line lineOfFailure] [description]

. . .

reqMsg
[error errorValue errorString : line lineOfFailure] [description]

mm/dd/yy hh:mm:ss <Completed|Interrupted> (linesImported of
linesToImport) percentCplt% complete

Successful: successfulCmds Failures: failedCmds Total: totalCmds

The Table 3-4 describes the import log file parameters.

Table 3-4 Import Log File Parameters

Parameter Description Values

mm/dd/yy Date, in UTC, that the entry
was logged.

• mm = 01-12 (month)
• dd = 01-31 (day of month)
• yy = 00-99 (last two digits

of the year)

hh:mm:ss Time, in UTC, the entry was
logged.

• hh = 00-23 (hours)
• mm = 00-59 (minutes)
• ss = 00-59 (seconds)

linesImported Number of lines of the import
file that have been processed

linesToImport Total number of lines of the
import file to be processed

percentCplt Percentage of import file
(lines) processed

reqMsg Request Message that
resulted in error

errorValue Message Response Error
Value

errorString Message Response Error
String

lineOfFailure Line number of the failed
Request Message

description Description of any Request
Message failure.

successfulCmds Total number of Request
Messages successfully
committed

failedCmds Total number of Request
Messages that resulted in
failure

Chapter 3
Data Import

3-12

Table 3-4 (Cont.) Import Log File Parameters

Parameter Description Values

totalCmds Total number of Request
Messages that were
processed

Example of a successfully completed import log file:

02/06/13 13:28:01 Started (0 of 200) 0% complete

<removeSubscriber ent="subscriberRouting" ns="dsr"><imsi>310910421000102</
imsi></removeSubscribe r>
[error 2001 INV_REQUEST_NAME : line 5]

<updateSubscriber ent="subscriberRouting" ns="dsr"><imsi>310910421000102</
imsi><ltehss>LTE_HSS_9 </ltehss></updateSubscriber>
[error 2006 DEST_NOT_FOUND : line 17]

<deleteSubscriber ent="subscriberRouting" ns="dsr"><imsi>310910421000199</
imsi> </deleteSubscriber>
[error 2007 IMSI_NOT_FOUND : line 36]

<startTransaction/
[error 1028 BAD_IMPORT_CMD : line 77]

02/06/13 13:28:03 Completed (200 of 200) 100% complete

Successful: successfulCmds Failures: failedCmds Total: totalCmds

Example of an interrupted import log file:

02/06/13 13:28:01 Started (0 of 200) 0% complete

02/06/13 13:28:03 Connection terminated

02/06/13 13:28:03 Interrupted (100 of 200) 50% complete

Successful: 100 Failures: 0 Total: 100

The status of all imported files can be viewed from the SDS GUI. We recommend you see the
SDS Online Help for more information.

3.8.1 Provisioning Data Import (XML)
Data can be imported from an XML import file to add, update, or delete existing data in the
provisioning database.

An XML import file is an ASCII text file that contains a series of database manipulation
requests in XML format as specified in XML Message Definitions. An import file may contain
as many requests as the storage media used to hold the import file allows. Table 3-5 shows
the database manipulation requests that are supported in an XML import file.

Chapter 3
Data Import

3-13

Note:

You can only add a subscriber to a subscriber table, if the Account ID, IMSI,
or MSISDN is not already in the table. If the table already contains any of
these values, the add function fails and an error condition report is generate
that contains the reason for the failure.

Table 3-5 Supported Database Requests for XML Import Files

XDS Operation Description Section

updateSubscriber Update Subscriber Routing
Data (type IMSI/MSISDN)

Update Subscriber

deleteSubscriber Delete Subscriber Routing
Data (type IMSI/MSISDN)

Delete Subscriber

updateSubscriberNAI Update Subscriber Routing
Data (type NAI)

Update Subscriber NAI

deleteSubscriberNAI Delete Subscriber Routing
Data (type NAI)

Delete Subscriber NAI

Unsupported requests are skipped, and each occurrence is recorded as
BAD_IMPORT_CMD in the import log file. Errors encountered while processing the
import file are recorded in the import log. Unknown/invalid requests are skipped with
each occurrence recorded as INV_REQUEST_NAME in the import log file.

Blank and comment lines are skipped. The format of a XML comment line is:

<!-- comment --/>

XML requests are processed in the order that they are read from the import file and
must be ordered to satisfy any data dependencies.

Import file names on the remote server must be suffixed with .xml to be automatically
downloaded and imported into the provisioning database.

<filename>.xml

Update requests may be unavailable to other clients for the duration of an import
operation, if the import mode is set to blocking (see the Export Mode configuration
variable in XML/SOAP Interface System Variables). Read requests are always
available.

3.8.2 Provisioning Data Import (CSV)
A CSV import file consists of an ASCII text file that contains a series of database
manipulation requests in CSV format. Each request must be on a separate line.

An import file can contain as many requests as the storage media used to hold the
import file allows. The CSV import process ignores all blank lines and lines that begin
with a # character, which are treated as comments.

Table 3-6 shows the supported CSV import formats, examples of each update and
delete command, and the import file names.

Chapter 3
Data Import

3-14

If the import line has fewer values separated by commas than the number of fields listed in
the Format column, the missing fields are treated as unspecified and contain no value. The
file names must have the format shown in the table, where X is at least one alpha-numeric
character.

Note:

You can only add a subscriber to a subscriber table, if the Account ID, MSISDN, or
IMSI is not already in the table. If the table already contains any of these values, the
add function fails and an error condition report is generate that contains the reason
for the failure.

Table 3-6 CSV Import Formats

Import Type Format/Example File Name

Destination <U|D>, <NAME>, <TYPE>, <FQDN>,
<REALM>

import_X_destination.csv

U,imsgroup1,imshss,operator.com,imswest

D,aaagroup2

IMSI <U|D>, <IMSI>, <IMSHSSname>,
<LTEHSSname>, <PCRFname>,
<OCSname>, <OFCSname>, <AAAname>,
<UserDef1Name>, <UserDef2Name>,
<MTCHSSName>

import_X_imsi.csv

I,7857857802,,dest2,,,,,,,dest9

U,7857857802,,dest2,,,,,,,dest9

D,7857857803

MSISDN <U|D>, <MSISDN>, <IMSHSSname>,
<LTEHSSname>, <PCRFname>,
<OCSname>, <OFCSname>, <AAAname>,
<UserDef1Name>, <UserDef2Name>,
<MTCHSSName>

import_X_msisdn.csv

I,17857853013,imsgroup13,dest2,,,,,,,dest9

U,17857853013,imsgroup13,dest2,,,,,,,dest9

D,17857853014

NAI User <U|D>, <USER>, <HOST>, <IMSHSSname>,
<LTEHSSname>, <PCRFname>,
<OCSname>, <OFCSname>, <AAAname>,
<UserDef1Name>, <UserDef2Name>,
<MTCHSSName>

import_X_naiuser.csv

U,dptestUser03,dptestHost0,,,dest3

D,dptestUser07,dptestHost0

Wildcard NAI User <U|D>, <WCUSER>, <HOST>,
<IMSHSSname>, <LTEHSSname>,
<PCRFname>, <OCSname>, <OFCSname>,
<AAAname>, <UserDef1Name>,
<UserDef2Name>, <MTCHSSName>

import_X_wcnaiuser.csv

U,dptestUser2,dptestHost0,,,,,,dest20,dest28

D,dptestUser3,dptestHost0

NAI Host <U|D>, <HOST> import_X_naihost.csv

Chapter 3
Data Import

3-15

Table 3-6 (Cont.) CSV Import Formats

Import Type Format/Example File Name

U,dptestHost0

D,dptestHost1

Domain Identifier <U|D|I>, < DOMAINID>, <IMSHSSname>,
<LTEHSSname>, <PCRFname>,
<OCSname>, <OFCSname>, <AAAname>,
<UserDef1Name>, <UserDef2Name>,
<MTCHSSName>

import_X_domainIdentifier.csv

I,tekelec.com,dest1,,,,,,,,dest9

U,tekelec.com,dest1,,,,,,,,dest9

D,tekelec.com

External Identifier <U|D|I>, <EXTID>, <IMSHSSname>,
<LTEHSSname>, <PCRFname>,
<OCSname>, <OFCSname>, <AAAname>,
<UserDef1Name>, <UserDef2Name>,
<MTCHSSName>

import_X_externalIdentifier.csv

I,test1@tekelec.com,dest1,,,,,,,,dest9

U,test1@tekelec.com,dest1,,,,,,,,dest9

D,test1@tekelec.com

IMSI Prefix <U|D>, <IMSIprefix>, <IMSHSSname>,
<LTEHSSname>, <PCRFname>,
<OCSname>, <OFCSname>, <AAAname>,
<UserDef1Name>, <UserDef2Name>,
<MTCHSSName>

import_X_imsiprefix.csv

U,78578520,imsgroup22

D,78578540

MSISDN Prefix <U|D>, <MSISDNprefix>, <IMSHSSname>,
<LTEHSSname>, <PCRFname>,
<OCSname>, <OFCSname>, <AAAname>,
<UserDef1Name>, <UserDef2Name>,
<MTCHSSName>

import_X_msisdnprefix.csv

U,17857852012,imsgroup24

D,178578540

IMSI Blacklist <U|D>, <IMSI> import_X_imsiblacklist.csv

U,7857851011

D,7857852012

MSISDN Blacklist <U|D>, <MSISDN> import_X_msisdnblacklist.csv

U,17857851011

D,17857852012

Chapter 3
Data Import

3-16

Table 3-6 (Cont.) CSV Import Formats

Import Type Format/Example File Name

Subscriber <U|D|I>, <AccountId>, <IMSI1>, <IMSI2>,
<IMSI3>, <IMSI4>, <IMSI5>, <IMSI6>,
<MSISDN1>, <MSISDN2>, <MSISDN3>,
<MSISDN4>, <MSISDN5>, <MSISDN6>,
<ExtId1>, <ExtId2>, <ExtId3>, <ExtId4>,
<ExtId5>, <ExtId6>, <ExtId7>, <ExtId8>,
<ExtId9>, <ExtId10>, <IMSHSSname>,
<LTEHSSname>, <PCRFname>,
<OCSname>, <OFCSname>, <AAAname>,
<UserDef1Name>, <UserDef2Name>,
<MTCHSSName>

import_X_subscriber.csv

I,77777777777777777777711111,77746055
00,

7774605501,,,,,777771111122222,

777771111133333,,,,,user1@oracle.com,use
r2@oracle.com,,,,,,,,,imsgroup1,ltehss2,dest3
,dest4,,,dest7,dest8,dest9

U,77777777777777777777711111,77746055
00,

7774605501,,,,,777771111122222,

777771111133333,,,,,user1@oracle.com,usr
e2@oracle.com,,,,,,,,,imsgroup1,ltehss2,dest
3,dest4,,,dest7,dest8,dest9

D,77777777777777777777722222,,,,,,,,,,,,

Table 3-7 defines the Import Type fields.

Table 3-7 CSV Import Fields

Field Description

<I|U|D> Update or delete record. (I=Insert, U=Update,
D=Delete)

<NAME> A unique string of 1-32 characters to identify the
Destination

<IMSI> A unique string of 10-15 decimal digits

<IMSIprefix> A unique string of 1-15 decimal digits

<TYPE> Destination type. Values: imshss, ltehss, pcrf, ocs,
ofcs, aaa, userdef1, userdef2, or mtchss)

<FQDN> A 1-255 character string for the Diameter FQDN
for the destination

<REALM> A 1-255 character string for the Diameter Realm
for the destination. Optional

<MSISDN> A unique string of 8-15 decimal digits

<MSISDNprefix> A unique string of 1-15 decimal digits

<IMSHSSname> Name of an IMS HSS destination

<LTEHSSname> Name of an LTE HSS destination

<PCRFname> Name of a PCRF destination

<OCSname> Name of an OCS destination

Chapter 3
Data Import

3-17

Table 3-7 (Cont.) CSV Import Fields

Field Description

<OFCSname> Name of an OFCS destination

<AAAname> Name of an AAA destination

<UserDef1Name> Name of a UserDef1 destination

<UserDef2Name> Name of a UserDef2 destination

<MTCHSSName> Name of a MTC HSS destination

<USER> A string of 1-64 characters for the NAI User Name

<WCUSER> A string of 1-64 characters for the wild carded NAI
User Name

<HOST> A unique string of 1-64 characters for the NAI Host
Name

<ExtId> A string of 3-257 characters for the External
Identifier

<DomainId> A unique string of 1-128 characters for the Domain
Identifier

<AccountId> A unique string of 1-26 decimal digits, if present

An import can be specified to run in one of the following modes:

• Blocking – An import runs while updates are blocked on all other PDBI
connections. This allows for a logically complete import file created in the fastest
time possible at the cost of delaying any new provisioning updates until the import
is completed and the transaction is closed.

• Non-Blocking (Real-time) – An import runs while updates are continued to be
received and committed to the database.

Import file names on the remote server must have a suffix of .csv to be automatically
downloaded and imported into the provisioning database.

3.8.2.1 CSV Data Import for Subscribers
Each line in the subscriber import file is for one subscriber, which is defined as a group
of related routing entities.

The update commands in the subscriber import file contain all of the routing entities
and Account ID values for one subscriber. During the import process, all specified
routing entities and Account ID values are added to a new subscriber, or an existing
subscriber is updated to contain only the specified values.

For example, if an existing subscriber has an IMSI, MSISDN, or External Identifier
value that was not specified in the CSV import file, that IMSI, MSISDN, or External
Identifier routing entity is removed from the subscriber and deleted.

The delete commands in the subscriber import file must indicate at least one Account
ID, IMSI, MSISDN, or External Identifier value for each subscriber. The delete
commands delete the whole subscriber, including all routing entities related to that
subscriber.

By default, the IMSI, MSISDN, and External Identifier routing entity CSV files are for
stand-alone routing entities. The import command adds a new stand-alone routing
entity, updates an existing routing entity, or deletes a routing entity.

Chapter 3
Data Import

3-18

If an update command is for an IMSI, MSISDN, or External Identifier value that is part of a
subscriber, then the updated destination values are automatically applied to all other routing
entities for the subscriber.

If a delete command is for an IMSI, MSISDN, or External Identifier value that is part of a
subscriber, the delete affects only a single routing entity. The delete command cannot delete
the last routing entity for a subscriber. The user must delete the whole subscriber.

3.9 Data Export
The export feature allows a full text export of the database. Exported records can be used to
perform data manipulation of subscriber data. Exports can be scheduled as one-time or
recurring. Exported data can be offloaded to a remote server. The exported text file can be
downloaded from the file transfer area.

Note:

Export is a time consuming operation recommended to be scheduled during off-
peak hours.

Export options and scheduling are configured using the GUI on the Active SDS server on the
Primary Provisioning Site. The GUI is also used to view the status of all in-progress or
completed exports. We recommend you see the SDS Online Help for more information.

The type of data that can be exported is defined in Table 3-1. All export formats allow all
available data to be exported for the given format.

The XML and CSV exports use the same format as the imports. See Provisioning Data
Import (XML) and Provisioning Data Import (CSV) for more information.

The HLRR Export creates ent_sub HLRR PDBI commands. If data is exported in the HLRR
format, only the MSISDN and/or IMSI values that have E.164 addresses are exported. The
HLRR format produces commands that are in HLR Router's PDBI format.

If the All option is selected for export in the XML or CSV format, then each IMSI, MSISDN,
and External Identifier value is exported once. If the MSISDN value is assigned to a
subscriber, then the MSISDN value is exported with the subscriber data. If the MSISDN value
is not assigned to a subscriber, then the MSISDN value is exported with the MSISDN data.
The IMSI value is also exported with subscriber or IMSI data. Likewise for the External
Identifier values - the External Identifier value is either exported with Subscriber or Local
Identifier data.

The export file is an ASCII text file with 1 line per entry. The first line of the export file contains
a comment that indicates the export mode, the data base level when export was started, and
the time the export was started. Before each type of data is exported, a comment line
indicates the type of data that follows. The last line of the export file contains a comment that
indicates when the export finished. If the export was run in non-blocking mode, then the
database level at the end of the export is listed before the time value within the comment.

Export file formats vary, depending on the export format type as shown in the following
sections.

Chapter 3
Data Export

3-19

Export XML File Format in Non-Blocking Mode

<!-- mode, level, yyyymmddhhmmss -->
<!-- type -->
reqMsg
. . .
reqMsg
. . .
<!-- type -->
reqMsg
. . .
reqMsg
<!-- level, yyyymmddhhmmss -->

Export CSV File Format in Non-Blocking Mode

mode, db level=level, start time=yyyymmddhhmmss
type
reqMsg
. . .
reqMsg
. . .
type
reqMsg
. . .
reqMsg
db level=level, finish time=yyyymmddhhmmss

Export HLRR File Format in Non-Blocking Mode

mode, db level=level, start time=yyyymmddhhmmss
reqMsg
. . .
reqMsg
db level=level, finish time=yyyymmddhhmmss

Export Log File Parameters

Parameter Description Values

mode Export Mode blocking = Updates are
blocked during export

realtime = Updates are
allowed during export

level (Optional) Durable database level (at
start or end of export).
If exporting in blocking mode,
the level is not displayed on
the last line of file.

0-4294967295

Chapter 3
Data Export

3-20

Parameter Description Values

yyyymmddhhmmss Date and time (in UTC) export
started or completed.

yyyy = 1970 - 2099 (year)

mm = 01 - 12 (month)

dd = 01 - 31 (day of month)

hh = 00 - 23 (hours)

mm = 00 - 59 (minutes)

ss = 00 - 59 (seconds)

type (Optional) Comment with type of data
being exported.

Export in hlrr format does not
have this field because hlrr
format only exports one type
of command.

reqMsg Exported data in an update
request message format.

3.10 Relaying Data to the HLR Router
SDS provides two ways to send data to the HLR router:

• PDB Relay

• Bulk Load Between SDS and HLR Router

These methods allow the MSISDN and IMSI routing entities to be provisioned once on the
SDS server instead of provisioning the data on both SDS and the HLR router.

3.10.1 PDB Relay
The MSISDN and IMSI routing entities can be provisioned with destinations that have an
E.164 network entity value. These provisioning commands are automatically sent from the
Active SDS server on the Primary Provisioning Site to HLRR.

The PDBA client called pdbrelay connects to a remote PDBA running on the HLR Router
system and relays the desired provisioning received from the customer provisioning system.
Only commands that could affect HLR Router subscribers are relayed.

3.10.2 Bulk Load
Data can be transferred between the SDS and the HLR Router by exporting SDS data and
then importing the file on the Active Network OAM&P HLR Router server.

Note:

The data transfer is performed from the SDS GUI. We recommend you see the
SDS Online Help for more information.

To transfer the data:

Chapter 3
Relaying Data to the HLR Router

3-21

1. Disable PDB Relay Enabled and set the Export Mode configuration option value to
Blocking on the SDS GUI.

2. Schedule an export on the SDS GUI.

3. After the export, check the Relay Exception Log for any new pdbexport
exceptions on the SDS GUI.

4. Transfer the export file to the HLR Router.

5. Store the file on the Remote Import server and directory displayed on the HLR
Router GUI. We recommend you refer to Online Help for the current version of the
HLR Router for more information.

6. Rename the file on the HLR Router server by changing the .hlrr extension
to .pdbi.

7. The HLR Router automatically imports the file. Verify successful import.

8. Enable PDB Relay Enabled and set the Export Mode configuration option to
Blocking or Non-Blocking on the SDS GUI.

3.11 Measurements
XML Data server and SOAP server specific measurements are collected and made
available to the user via the SDS GUI. We recommend you see the SDS Online Help
for more information. The XML Data server, SOAP server, and bulk import/export tools
all update the same measurements.

Note:

The format of this information conforms to SDM practices, so may vary from
the format described here.

Table 3-8 SDS Measurements

ID Group Tag Coll Interval Description

4100 PROV ProvConnectsAttempted 5 min The total number
of client-initiated
connect attempts
to establish a
connection with
the server.

4101 PROV ProvConnectsAccepted 5 min The total number
of client-initiated
connect attempts
that have been
accepted.

Chapter 3
Measurements

3-22

Table 3-8 (Cont.) SDS Measurements

ID Group Tag Coll Interval Description

4102 PROV ProvConnectsDenied 5 min The total number
of client initiated
connect attempts
that have been
denied due to
clients not
running on an
authorized server,
maximum number
of allowed
connections
already
established, or
the provisioning
interface is
disabled.

4103 PROV ProvConnectsFailed 5 min The total number
of client initiated
connect attempts
that failed due to
errors during
initialization.

4105 PROV ProvConnectionIdleTimeouts 5 min Total number of
connections that
have timed out
and terminated
due to idleness.
Timeout period is
specified by XML
Interface Idle
Timeout as
described in
XML/SOAP
Interface System
Variables.

4110 PROV ProvMsgsReceived 5 min The total number
of provisioning
messages that
have been
received.

4111 PROV ProvMsgsSuccessful 5 min The total number
of provisioning
messages that
have been
successfully
processed.

Chapter 3
Measurements

3-23

Table 3-8 (Cont.) SDS Measurements

ID Group Tag Coll Interval Description

4112 PROV ProvMsgsFailed 5 min The total number
of provisioning
messages that
have failed to be
processed due to
errors. See SDS
Response
Message Error
Codes for a list
and description of
possible errors.

4113 PROV ProvMsgsSent 5 min The total number
of provisioning
messages that
have been sent.

4114 PROV ProvMsgsDiscarded 5 min The total number
of provisioning
messages that
have been
discarded due to
the connection
being shut down,
server being
shutdown,
server's role
switching from
active to standby,
or transaction not
becoming durable
within the allowed
amount of time.

4120 PROV ProvMsgsImported 5 min The total number
of provisioning
messages that
have been
received from an
import operation.

4140 PROV ProvTxnCommitted 5 min The total number
of transactions
that have been
successfully
committed to the
database
(memory and on
disk) on the
active server of
the primary SDS
site.

Chapter 3
Measurements

3-24

Table 3-8 (Cont.) SDS Measurements

ID Group Tag Coll Interval Description

4141 PROV ProvTxnWriteMutexTimeouts 5 min The total number
of transactions
that have failed to
be processed due
to timing out
while waiting to
acquire the
transaction
mutex.

4142 PROV ProvTxnFailed 5 min The total number
of transactions
that have failed to
be started,
committed, or
aborted due to
errors. See SDS
Response
Message Error
Codes for a list
and description of
possible errors.

4143 PROV ProvTxnAborted 5 min The total number
of transactions
that have been
successfully
aborted.

4144 PROV ProvTxnTotal 5 min The total number
of transactions
that have been
attempted. It is
the sum of
ProvTxnCommitte
d,
ProvTxnTimeouts
,
ProvTxnAborted,
and
ProvTxnFailed
counters.

4145 PROV ProvTxnDurabilityTimeouts 5 min The total number
of committed,
non-durable
transaction that
have failed to
become durable
within the amount
of time specified
by Transaction
Durability
Timeout, as
described in
XML/SOAP
Interface System
Variables.

Chapter 3
Measurements

3-25

Table 3-8 (Cont.) SDS Measurements

ID Group Tag Coll Interval Description

4155 PROV RemoteAuditStarted 5 min The number of
started remote
audit requests.

4156 PROV RemoteAuditCompleted 5 min The number of
successfully
completed
remote audit
requests.

4157 PROV ProvRelayMsgsSent 5 min The total number
of relayed
PROVISIONING
messages sent to
the remote
system.

4158 PROV ProvRelayMsgsSuccessful 5 min The total number
of relayed
PROVISIONING
messages that
have been
successfully
processed on the
remote system.

4159 PROV ProvRelayMsgsFailed 5 min The total number
of relayed
PROVISIONING
messages that
have failed to be
processed due to
errors on the
remote system.

4160 PROV ProvImportsSuccessful 5 min The total number
of files imported
successfully.

4161 PROV ProvImportsFailed 5 min The total number
of files that had
failed to be
imported due to
errors.

4162 PROV ProvExportsSuccessful 5 min The total number
of successful
CSV/XML export
requests.

4163 PROV ProvExportsFailed 5 min The total number
of CSV/XML
export requests
that have failed
due to errors.

4174 PROV ProvDnSplitCreated 5 min The number of
MSISDN records
successfully
created by an
Active Split.

Chapter 3
Measurements

3-26

Table 3-8 (Cont.) SDS Measurements

ID Group Tag Coll Interval Description

4175 PROV ProvDnSplitRemoved 5 min The number of
MSISDN records
successfully
removed by a
Completing Split.

4176 PROV ProvNpaSplitStarted 5 min The number of
NPA split records
successfully
starting a PDP.

4177 PROV ProvNpaSplitCompleted 5 min The number of
NPA split records
successfully
completing a
PDP.

4179 PROV ProvRemoteAuditMsgsSent 5 min The number of
IMSI and
MSISDN records
audited.

4189 PROV ProvRelayTimeLag 5 min The time in
seconds between
timestamps of
last record
PdbRelay
processed and
latest entry in the
Command Log.

4198 PROV ProvDbException 5 min Number of DB
Exception errors.

3.12 Key Performance Indicators
Table 3-9 shows the provisioning-specific Key Performance Indicators (KPIs) that are
available to the user on the SDS GUI. Table 3-10 shows the process-based KPIs.

For all Provisioning Interface KPIs, the Scope has a value of 'A'.

Note:

The format of this information conforms to SDM practices, so may vary from the
format described here.

Chapter 3
Key Performance Indicators

3-27

Table 3-9 Provisioning Interface KPI Measurements

ID Name Avg. Interval Description

4104 ProvConnections 60 sec The number of
provisioning client
connections currently
established. A single
connection includes a
client having
successfully
established a TCP/IP
connection, sent a
provisioning connect
message, and having
received a successful
response.

4110 ProvMsgsReceived 60 sec The number of
provisioning
messages that have
been received per
second.

4111 ProvMsgsSuccessful 60 sec The number of
provisioning
messages that have
been successfully
processed per second.

4112 ProvMsgsFailed 60 sec The number of
provisioning
messages per second
that have failed to be
processed due to
errors. See SDS
Response Message
Error Codes for a list
and description of
possible errors.

4113 ProvMsgsSent 60 sec The number of
provisioning
messages sent per
second.

4114 ProvMsgsDiscarded 60 sec The number of
provisioning
messages discarded
per second.
Provisioning
messages are
discarded due to the
connection being
shutdown, server
being shutdown,
server's role switching
from active to standby,
or transaction not
becoming durable
within the allowed
amount of time.

Chapter 3
Key Performance Indicators

3-28

Table 3-9 (Cont.) Provisioning Interface KPI Measurements

ID Name Avg. Interval Description

4120 ProvMsgsImported 60 sec The number of
provisioning
messages imported
per second.

4140 ProvTxnCommitted 60 sec The number of
provisioning
transactions per
second that have been
successfully
committed to the
database (memory
and on disk) on the
active server of the
primary SDS cluster.

4142 ProvTxnFailed 60 sec The number of
provisioning
transactions per
second that have
failed to be started,
committed, or aborted
due to errors. See
SDS Response
Message Error Codes
for a list and
description of possible
errors.

4143 ProvTxnAborted 60 sec The number of
provisioning
transactions aborted
per second.

4150 ProvTxnActive 60 sec The number of
provisioning
transactions that are
currently active
(normal transaction
mode only).

4151 ProvTxnNonDurable 60 sec The number of
transactions that have
been committed, but
are not yet durable.
Responses for the
associated requests
are not sent until the
transaction has
become durable.

4157 ProvRelayMsgsSent 60 sec The number of relayed
provisioning
messages sent per
second.

4158 ProvRelayMsgs Successful 60 sec The number of relayed
provisioning
messages that have
been successfully
processed per second.

Chapter 3
Key Performance Indicators

3-29

Table 3-9 (Cont.) Provisioning Interface KPI Measurements

ID Name Avg. Interval Description

4159 ProvRelayMsgs Failed 60 sec The number of relayed
provisioning
messages per second
that have failed to be
processed due to
errors.

4179 ProvRemoteAudit MsgsSent 60 sec The number of IMSI
and MSISDN records
audited per second.

4189 ProvRelayTimeLag 60 sec Time in seconds
between timestamps
of last record
PdbRelay processed
and latest entry in the
Command Log.

4198 ProvDb Exception 60 sec Number of DB
Exception errors per
second.

For all process-based KPIs, the Scope has a value of 'A'.

Table 3-10 Process-based KPIs

ID Name Avg. Interval Description

4165 provimport.Cpu 60 sec CPU usage of
provimport process

4166 provimport.MemHeap 60 sec Heap memory usage
of provimport process

4167 provimport.MemBasTotal 60 sec Memory usage of the
provimport process

4168 provimport.MemPerTotal 60 sec Percent memory
usage of provimport
process

4170 provexport.Cpu 60 sec CPU usage of
provexport process

4171 provexport.MemHeap 60 sec Heap memory usage
of provexport process

4172 provexport.MemBasTotal 60 sec Memory usage of the
provexport process

4173 provexport.MemPerTotal 60 sec Percent memory
usage of provexport
process

4180 pdbrelay.Cpu 60 sec CPU usage of
pdbrelay process

4181 pdbrelay.MemHeap 60 sec Heap memory usage
of pdbrelay process

4182 pdbrelay.MemBasTotal 60 sec Memory usage of the
pdbrelay process

Chapter 3
Key Performance Indicators

3-30

Table 3-10 (Cont.) Process-based KPIs

ID Name Avg. Interval Description

4183 pdbrelay.MemPerTotal 60 sec Percent memory
usage of pdbrelay
process

4184 pdbaudit.Cpu 60 sec CPU usage of
pdbaudit process

4185 pdbaudit.MemHeap 60 sec Heap memory usage
of pdbaudit process

4186 pdbaudit.MemBasTotal 60 sec Memory usage of the
pdbaudit process

4187 pdbaudit.MemPerTotal 60 sec Percent memory
usage of pdbaudit
process

4190 pdba.Cpu 60 sec CPU usage of pdba
process

4191 pdba.MemHeap 60 sec Heap memory usage
of pdba process

4192 pdba.MemBasTotal 60 sec Memory usage of the
pdba process

4193 pdba.MemPerTotal 60 sec Percent memory
usage of pdba process

4194 xds.Cpu 60 sec CPU usage of xds
process

4195 xds.MemHeap 60 sec Heap memory usage
of xds process

4196 xds.MemBasTotal 60 sec Memory usage of the
xds process

4197 xds.MemPerTotal 60 sec Percent memory
usage of xds process

4200 dpserver.Cpu 60 sec CPU usage of
dpserver process on
DP

4201 dpserver.MemHeap 60 sec Heap memory usage
of dpserver process
on DP

4202 dpserver.MemBasTotal 60 sec Memory usage of the
dpserver process on
DP

4203 dpserver.MemPerTotal 60 sec Percent memory
usage of dpserver
process on DP

4310 era.Cpu 60 sec CPU usage of era
process

4311 era.MemHeap 60 sec Heap memory usage
of era process

4312 era.MemBasTotal 60 sec Memory usage of the
era process

4313 era.MemPerTotal 60 sec Percent memory
usage of era process

Chapter 3
Key Performance Indicators

3-31

3.13 Alarms
XML Data server and SOAP server specific alarms are available to the user via the
SDS GUI and Network Operation Center (NOC) console(s) if SNMP is configured by
the SDS GUI. We recommend you see the SDS Online Help for more information.

Alarms for Provisioning Group

The HA Score for all IDs in this group is Normal.

Table 3-11 Alarms for Provisioning Group

ID Name Addl Info Severity Instance
Throttle

Secs

Auto
Clear
Secs

Assert/
Clear
Condition(
s)

14100 Interface
Disabled

PROV
Interface
manually
disabled

Critical N/A 5 0 Provisioning
interface is
manually
disabled.

PROV
Interface
manually
enabled

Clear Provisioning
interface is
manually
enabled.

14101 No Remote
Connection
s

No remote
provisionin
g clients
are
connected

Major N/A 5 0 Provisioning
interface is
enabled
and no
remote
provisioning
clients are
connected.

One or
more
remote
provisionin
g clients
are
connected

Clear Provisioning
interface is
enabled
and one or
more
remote
provisioning
clients are
connected.

14102 Connection
Failed

Initializatio
n Failed
(CID
Connectio
n ID, IP
Address)

Major Connecti
on ID: IP
Address

5 300 Provisioning
connection
establishme
nt failed due
to an error
specified in
additional
information.

Chapter 3
Alarms

3-32

Table 3-11 (Cont.) Alarms for Provisioning Group

ID Name Addl Info Severity Instance
Throttle

Secs

Auto
Clear
Secs

Assert/
Clear
Condition(
s)

Initializatio
n
Successfu
l (CID
Connectio
n ID, IP
Address)

Clear Alarm
automaticall
y cleared
after 5
minutes.

14103 Both Port
Identical

Provisioni
ng ports
are the
same

Major N/A 5 0 XML and
SOAP
Provisioning
interfaces
are disabled
since same
port is
configured
for both
interfaces.

One
provisionin
g port is
changed
to a
different
value

Clear XML and
SOAP
Provisioning
interfaces
are
enabled.

14140 Import
Throttled

Import
operation
throttled
(CID
Connectio
n ID)

Major provimpo
rt

5 5 Provisioning
import
throttled to
prevent
overrunning
idb service
processes.

Import
operation
throttled
(CID
Connectio
n ID)
cleared

Clear Alarm
automaticall
y cleared in
5 seconds
after
throttling
subsides.

14150 Import
Initialization
Failed

Initializatio
n error,
see trace
log for
details

Major provimpo
rt

5 0 Provisioning
import
initialization
failed due to
an error
specified in
additional
information.

Chapter 3
Alarms

3-33

Table 3-11 (Cont.) Alarms for Provisioning Group

ID Name Addl Info Severity Instance
Throttle

Secs

Auto
Clear
Secs

Assert/
Clear
Condition(
s)

Initializatio
n error
cleared

Clear Provisioning
import
initialization
completed
successfully
.

14151 Import
Generation
Failed

Failed to
import file,
see trace
log for
details

Major provimpo
rt

5 0 Provisioning
import
operation
failed due to
an error
specified in
additional
information.

Generatio
n error
cleared

Clear Provisioning
import
operation
completed
successfully
.

14152 Import
Transfer
Failed

Failed to
transfer
file from
remote
host, see
trace log
for details

Major provimpo
rt

5 0 Provisioning
import
operation
failed due to
a file
transfer
error
specified in
additional
information.

Transfer
error
cleared

Clear Provisioning
import
operation
completed
successfully
.

14153 Export
Initialization
Failed

Initializatio
n error,
see trace
log for
details

Major provimpo
rt

5 0 Provisioning
export
initialization
failed due to
an error
specified in
additional
information.

Initializatio
n error
cleared

Clear Provisioning
export
initialization
completed
successfully
.

Chapter 3
Alarms

3-34

Table 3-11 (Cont.) Alarms for Provisioning Group

ID Name Addl Info Severity Instance
Throttle

Secs

Auto
Clear
Secs

Assert/
Clear
Condition(
s)

14154 Export
Generation
Failed

Scheduled
export
failed, see
trace log
for details

Major provimpo
rt

5 0 Provisioning
export
operation
failed due to
an error
specified in
additional
information.

Generatio
n error
cleared

Clear Provisioning
export
operation
completed
successfully
.

14155 Export
Transfer
Failed

Failed to
transfer
file to
remote
host, see
trace log
for details

Major provimpo
rt

5 0 Provisioning
export
operation
failed due to
a file
transfer
error
specified in
additional
information.

Transfer
error
cleared

Clear Provisioning
export
operation
completed
successfully
.

Chapter 3
Alarms

3-35

Table 3-11 (Cont.) Alarms for Provisioning Group

ID Name Addl Info Severity Instance
Throttle

Secs

Auto
Clear
Secs

Assert/
Clear
Condition(
s)

14188 Pdbrelay
not
connected

Bulk load
of remote
system
required:
Cannot
find last
Prov
Relay
Timestam
p in Cmd
Log

or

No relay
remote
system IP
address
defined in
configurati
on options

or

Timeout
while
connectin
g to server

Major pdbrelay 0 0 Pdbrelay
feature is
enabled, but
the
connection
to the
remote
HLRR
system is
not
established.
To remedy,
1) perform
Bulk Load
Procedure
at the
HLRR, 2)
configure
the HLRR
address in
the SDS
GUI, or 3)
verify
network
connectivity
with the
HLRR.

Remote
HLRR is
connected

Clear Pdbrelay
feature is
enabled,
and the
connection
to the
remote
HLRR
system is
established.

Chapter 3
Alarms

3-36

Table 3-11 (Cont.) Alarms for Provisioning Group

ID Name Addl Info Severity Instance
Throttle

Secs

Auto
Clear
Secs

Assert/
Clear
Condition(
s)

14189 PdbRelay
Time Lag

ProvRelay
time lag
above
critical
threshold

Critical pdbrelay 300 0 Pdbrelay
feature is
enabled
and the
time
between
timestamps
of the last
record
processed
and the
latest entry
in the
Command
Log
exceeds
28.5
minutes.

ProvRelay
time lag
above
major
threshold

Major Pdbrelay
feature is
enabled
and the
time
between
timestamps
of the last
record
processed
and the
latest entry
in the
Command
Log
exceeds 15
minutes.

ProvRelay
time lagg
above
minor
threshold

Minor Pdbrelay
feature is
enabled
and the
time
between
timestamps
of the last
record
processed
and the
latest entry
in the
Command
Log
exceeds 4.5
minutes.

Chapter 3
Alarms

3-37

Table 3-11 (Cont.) Alarms for Provisioning Group

ID Name Addl Info Severity Instance
Throttle

Secs

Auto
Clear
Secs

Assert/
Clear
Condition(
s)

ProvRelay
time lag
within
acceptabl
e time

Clear Pdbrelay
feature is
not enabled
or the time
between
timestamps
of the last
record
processed
and the
latest entry
in the
Command
Log is less
than 3
minutes.

14198 ProvDb
Exception

ProvDb
Exception
rate above
critical
threshold

Critical ProvDb
Exceptio
n, SDS

3600 3600 Rate of
ProvDb
Exception
errors has
exceeded
1000 per
second.

ProvDb
Exception
rate above
critical
threshold

Major Rate of
ProvDb
Exception
errors has
exceeded
100 per
second.

ProvDb
Exception
rate above
critical
threshold

Minor At least one
ProvDb
Exception
has
occurred.

ProvDb
Exception
automatic
ally
cleared
after one
hour

Clear Alarm
automaticall
y cleared
after one
hour.

Alarms for ERA Group

The HA Score for all IDs in this group is Normal.

Chapter 3
Alarms

3-38

Table 3-12 Alarms for EPA Group

ID Name Addl Info Severity Instance
Throttle

Secs

Auto
Clear
Secs

Assert/Clear
Condition(s)

14301 ERA_Respon
der Failed

Event
responder
failed

Major N/A 300 0 Internal error
occurred –
contact My
Oracle
Support.

Event
responder
error
cleared

Clear Internal error
cleared.

3.14 Events
XML Data server and SOAP server specific events are available to the user via the SDS GUI
and Network Operation Center (NOC) console(s) if SNMP is configured by the SDS GUI. We
recommend you see the SDS Online Help for more information.

Note:

The format of this information will conform to SDM practices, so may vary from the
format described here.

The following parameters apply to all events listed in Table 3-13:

• Severity - Info

• Instance - N/A

• HA Score - Normal

• Auto Clear Seconds - 0

• Assert/Clear Conditions - N/A

Table 3-13 Events

ID Name/Descr Text Addl Info Throttle Secs

14120 Connection Established Provisioning client
connection established.

5

14121 Connection Terminated Provisioning client
connection terminated.

5

14122 Connection Denied Provisioning client
connection denied.

5

14160 Import Operation Completed See XML Import screen for
details.

5

14161 Export Operation Completed See XML Export screen for
details.

5

Chapter 3
Events

3-39

Table 3-13 (Cont.) Events

ID Name/Descr Text Addl Info Throttle Secs

14170 Remote Audit started and in
progress

Remote Audit started and is
in progress.

30

14171 Remote Audit aborted Remote Audit aborted 30

14172 Remote Audit failed to
complete

Remote Audit failed to
complete

30

14173 Remote Audit completed Remote Audit completed 30

14174 NPA Split pending request
deleted

NPA Split pending request
deleted

0

14175 NPA Split activation failed NPA Split activation failed 0

14176 NPA Split started and is Active NPA Split started and is
Active

0

14177 NPA Split completion failed NPA Split completion failed 0

14178 NPA Split completed NPA Split completed 0

14179 MSISDN deleted from
Blacklist

Previously Blacklisted
MSISDN is now a Routing
Entity

0

14180 IMSI deleted from Blacklist Previously Blacklisted IMSI
is now a Routing Entity

0

Chapter 3
Events

3-40

4
SOAP Message Definitions

This chapter describes the SOAP message syntax and parameters.

4.1 Message Conventions
Message specification syntax follows several conventions to convey what parameters are
required or optional and how they and their values must be specified.

Table 4-1 Message Conventions

Symbol Description

monospace with background
All code examples.

monospace Names of commands when provided outside of a
code example.

italics Variable names when provided outside of a code
example or value list.

spaces Spaces (for example, zero or more space
characters, " ") may be inserted anywhere except
within a single name or number. At least one
space is required to separate adjacent names or
numbers.

… Ellipses represent a variable number of repeated
entries. For example:

dn DN1 , dn DN2, …, dn DN7, dn DN8

4-1

Table 4-1 (Cont.) Message Conventions

Symbol Description

< > Angle brackets are used to enclose parameter
values that are choices or names.
In the following example, the numbers represent
specific value choices.

parameter1 <1|2|3>

In the following example, ServerName
represents the actual value.

parameter2 <ServerName>

In the following example, the numbers represent a
choice in the range from 0 to 3600.

parameter3 <0..3600>

[] Square brackets are used to enclose an optional
parameter and its value.

[, parameter1 < 1|2|3 >]

A parameter and its value that are not enclosed in
square brackets are mandatory.

| The pipe symbol is used in a parameter value list
to indicate a choice between available values.

Parameter1 <1|2|3>

, A literal comma is used in the message to
separate each parameter that is specified.

4.2 SOAP Request Messages
A SOAP request message is sent to the SDS SOAP provisioning client as a series of
ASCII characters. The SDS SOAP provisioning client sends back a SOAP response
message.

Every SOAP message sent to SDS must be sent in a SOAP envelope. Each SOAP
envelope has a <soapenv:Body> XML tag. The SDS provisioning or query request is
embedded within the <soapenv:Body> tag. The tags and values within the
<soapenv:Body> tag vary for each SDS request.

Chapter 4
SOAP Request Messages

4-2

SOAP Request Message Format

This example shows the format for all SOAP requests. The bolded text varies for each
provisioning request.

POST / HTTP/1.1
Host: ipAddress:port
Accept-Encoding: identity
Content-Length: lengthInBytes
SOAPAction: ""
Content-Type: text/xml; charset=”UTF-8”

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header/>
 <soapenv:Body>
 <requestName>
 [
 <requestParameters>
 ...
 </requestParameters>
 ...
 <requestParameters>
 ...
 </requestParameters>
]
 </requestName>
 </soapenv:Body>
</soapenv:Envelope>

SOAP Message Request Parameters

Table 4-2 Request Message Parameters (SOAP)

Parameter Description Value

ipAddress IP address of the SDS
Provisioning server that received
the SOAP request.

port Port of the SDS Provisioning
server that received the SOAP
request.

lengthInBytes Number of bytes in the SOAP
request.

0-4294967295

requestName The name of the SDS
provisioning request.

A string with 1 to 64 characters.

requestParameters The parameters (tag/value pairs)
needed for each request.

These parameters vary for each
SDS Provisioning or query
request.

Chapter 4
SOAP Request Messages

4-3

4.3 SOAP Response Messages
A SOAP response message is sent by the SOAP provisioning client in response to a
SOAP request. Each response contains a series of ASCII characters.

A rowset, contained between the <rset> tags, is present if data is to be returned (for
example, for <readSubscriberRequest>, <readSubscriberNaiRequest>, and
<readDomainRequest>).

A generic response type can be generated if a SOAP request cannot be parsed, the
request is not valid, etc. The responsename for this generic response is
errorResponse.

<res error="error" affected="affected" [description="description"]/>

Response Format (<readSubscriberResponse>,
<readSubscriberNaiResponse>, and <readDomainRequest> requests)

The bolded text differs for each response message.

HTTP/1.1 200 OK
Server: gSOAP/2.7
Content-Type: text/xml; charset=utf-8; action="”
Content-Length: lengthInBytes
Connection: keep-alive

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/”
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd="http://www.w3.org/2001/XMLSchema”
xmlns:ns2="http://www.tekelec.com/sds/"
xmlns:ns4="http://www.tekelec.com/sds/dsr/"
xmlns:ns3="http://www.tekelec.com/sds/dsr/soap/"
xmlns:ns5="http://www.tekelec.com/sds/soap"
 <SOAP-ENV:Header></SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <respName>
 <result affected="affected" error="error"
 [description="description"]>
 </result>
 [
 <resultSet>
 <rowName> [[rowAttributeName]="rowAttributeValue"] …
 [rowAttributeName]="rowAttributeValue"]]>
 <rowValueName>rowValue</rowValueName>
 ...
 <rowValueName>rowValue</rowValueName>
 </rowName>
 ...
 <rowName> [[rowAttributeName]="rowAttributeValue"] …
 [rowAttributeName]="rowAttributeValue"]]>

Chapter 4
SOAP Response Messages

4-4

 <rowValueName>rowValue</rowValueName>
 ...
 <rowValueName>rowValue</rowValueName>
 </rowName>
 </resultSet>
]
 </respName>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Response Format (All Other Requests)

This example shows the format for all SOAP responses. The bolded text varies for each
response message.

HTTP/1.1 200 OK
Server: gSOAP/2.7
Content-Type: text/xml; charset=utf-8; action="”
Content-Length: lengthInBytes
Connection: keep-alive

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/”
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd="http://www.w3.org/2001/XMLSchema”
xmlns:ns2="http://www.tekelec.com/sds/"
xmlns:ns4="http://www.tekelec.com/sds/dsr/"
xmlns:ns3="http://www.tekelec.com/sds/dsr/soap/"
xmlns:ns5="http://www.tekelec.com/sds/soap"
 <SOAP-ENV:Header></SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <ns2:sdsResult affected="affected" error="error"
 [description="description"]>
 </ns2:sdsResult>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

SOAP Response Message Parameters

Table 4-3 Response Message Parameters (SOAP)

Parameter Description Value

lengthInBytes Number of bytes in the SOAP
request.

0-4294967295

error Error code that indicates whether
or not operation was successfully
executed. See SDS Response
Message Error Codes.

0 for success, non-zero for failure

Chapter 4
SOAP Response Messages

4-5

Table 4-3 (Cont.) Response Message Parameters (SOAP)

Parameter Description Value

affected The number of routing entities or
subscribers (when group=”y”)
created/updated/deleted/read.
This number does not contain
number of subscriber records
created/update/deleted because
“subscriber” data is not used for
routing. It is possible to have
affected=0 and error=0.

0-10

description (Optional) A textual description associated
with the response. This field may
contain more information as to
why a request failed or describe
the changes if a request
succeeds.

A string with 1 to 1024
characters

respName (Optional) The name of the response. This field is only used for read
responses and errors

rowName The name of the row type
returned.

The value is dependent on the
result set returned

rowValue The value of the row type
returned.

The value is dependent on the
result set returned

rowAttributeName The name of the row attribute
name returned.

The value is dependent on the
result set returned

rowAttributeValue The value of the row attribute
name returned.

The value is dependent on result
set returned

4.3.1 Successful SOAP Subscriber Commands
If the SOAP command successfully updates or deletes a subscriber, then the response
description text indicates the deleted/created/changed IMSI and/or MSISDN and/or
External Identifier values and optionally a list of the subscriber's destination values.

Note:

Destination values are listed only if there were created or modified IMSI
and/or MSISDN and/or External Identifier routing entities.

Description Text Format

[description=“[deleted ({imsi nnnn|dn nnnn|externalId eeee}[, {imsi
nnnn|dn nnnn|externalId eeee}]…)]
[, created ({imsi nnnn|dn nnnn|externalId eeee}[, {imsi nnnn|,dn nnnn|
externalId eeee}]…)]
[, changed ({imsi nnnn|dn nnnn|externalId eeee}[, {imsi nnnn|,dn nnnn|
externalId eeee}]…)]
[, imshss nnnn][, ltehss nnnn][, pcrf nnnn][, ocs nnnn][, ofcs nnnn]
[, aaa nnnn][, userdef1 nnnn][, userdef2 nnnn][, mtchss nnnn]”]

Chapter 4
SOAP Response Messages

4-6

Example Description Text from an updateSubscriberRequest Command

description=”deleted (imsi 444444444444440, dn 19195550000), externalId
jon@oracle.com), created (imsi 444444444444441, dn 19195550001, dn
19195550002, externalId trump@oracle.com), imshss imshss2, ltehss ltehss1”

4.4 List of Request Operations
Table 4-4 lists the supported SOAP requests.

Table 4-4 Supported SOAP Requests

Operation Name Description Section

startTransactionRequest Start Database Transaction Start Transaction

commitRequest Commit Database Transaction Commit Transaction

rollbackRequest Abort Database Transaction Rollback Transaction

insertSubscriberRequest Insert IMSI/MSISDN/External
Identifier routing data and can
provision subscriber data if, and
only if, IMSI and MSISDN do not
already exist in the database

Insert Subscriber

updateSubscriberRequest Create/Update IMSI/MSISDN/
External Identifier Routing

Update Subscriber

deleteSubscriberRequest Delete IMSI/MSISDN/External
Identifier Routing

Delete Subscriber

readSubscriberRequest Get IMSI/MSISDN/External
Identifier Routing

Read Subscriber

updateSubscriberNaiRequest Create/Update NAI Routing Update Subscriber NAI

deleteSubscriberNaiRequest Delete NAI Routing Delete Subscriber NAI

readSubscriberNaiRequest Get NAI Routing Read Subscriber NAI

4.5 Start Transaction

4.5.1 Request
The <startTransactionRequest> message is sent to begin a database transaction.
Database manipulation and query requests (update, delete, and read) can be sent within the
context of the transaction.

If a <startTransactionRequest> is sent, and the connection is lost or the user logs off
without sending a <commitRequest> or <rollbackRequest>>, all pending requests are
rolled back.

A provisioning session can have one transaction open at a time. If a
<startTransactionRequest> is sent, another <startTransactionRequest> will fail
with an ACTIVE_TXN error.

A timeout can occur between the <startTransactionRequest> and the
<commitRequest>. If the <commitRequest> is not sent out within the configured
Maximum Transaction Lifetime (we recommend you see the SDS Online Help for more

Chapter 4
List of Request Operations

4-7

information) after the <startTransactionRequest>, the SOAP provisioning
requests are rolled back (changes not applied to database).

A transaction can only be opened by one client at a time. If a transaction is already
opened by another client, the <startTransactionRequest> is rejected
immediately with WRITE_UNAVAIL or is queued up for the time specified by the
timeout parameter. If the timeout parameter is specified with a non-zero value and
that period of time elapses before the transaction is opened, the
<startTransactionRequest> is rejected with WRITE_UNAVAIL.

Data manipulation requests are evaluated for validity and applied to a local database
view which is a virtual representation of the main database plus local modifications
made within this active transaction.

Local database view changes are not committed to the main database until the
transaction is ended with a <commitRequest>.

The request can be aborted and rolled back with a <rollbackRequest> request any
time before the transaction is ended with a <commitRequest>.

Request Format

The request must be inserted between the <soapenv:Body> and </
soapenv:Body> XML tags of a SOAP request message, as shown in SOAP Request
Messages.

<startTransactionRequest>timeout</startTransactionRequest>

Request Parameters

Table 4-5 <startTransactionRequest> Parameters (SOAP)

Parameter Description Value

timeout The amount of time (in
seconds) to wait to open a
transaction if another
connection already has one
open. Clients waiting to open a
transaction will be processed
in the order that their requests
were received.

0 (return immediately if not
available) to 3600 seconds.

The default is 0.

4.5.2 Response
The start transaction response is returned as a generic <ns2:sdsResult> response.
This response returns the result of starting a database transaction. If the response
error code indicates success, then the database transaction was successfully started.
If any failure response is returned, then the database transaction was not started.

Chapter 4
Start Transaction

4-8

Response Format

The response is displayed between the <soapenv:Body> and </soapenv:Body> XML
tags of a SOAP response message, as shown in SOAP Response Messages.

<ns2:sdsResult affected="affected" error="error" [description="description"]>
</ns2:sdsResult>

Response Parameters

The parameters for all of the response commands are shown in SOAP Response Messages.

Start Transaction Response Error Codes

Table 4-6 shows common error codes for the <startTransactionResponse> message.
See SDS Response Message Error Codes for a full list of error codes.

Table 4-6 <startTransactionResponse> Error Codes (SOAP)

Error Code Description

SUCCESS Transaction was successfully started.

NO_WRITE_PERMISSION The client making the connection does not have
write access permissions.

WRITE_UNAVAILABLE Another client already has a transaction open.
This is only returned to clients who have write
access permissions.

ACTIVE_TXN A read or write transaction is already open on this
connection or an open transaction was aborted
prior to terminating the connection.

4.5.3 Examples
These examples show the full SDS provisioning request and response contents.

Start a Transaction Within 2 Minutes (success)

This example successfully starts a transaction within 2 minutes.

Request:

POST / HTTP/1.1
Host: localhost:9090
Accept-Encoding: identity
Content-Length: 211
SOAPAction: ""
Content-type: text/xml; charset=”UTF-8”

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header/>
 <soapenv:Body>
 <startTransactionRequest>120</startTransactionRequest>

Chapter 4
Start Transaction

4-9

 </soapenv:Body>
</soapenv:Envelope>

Result:

POST / HTTP/1.1 200 OK
Server: gSOAP/2.7
Content-Type: text/xml; charset=utf-8; action=””
Content-Length: 592
Connection: keep-alive

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ns2="http://www.tekelec.com/sds/"
xmlns:ns4="http://www.tekelec.com/sds/dsr/"
xmlns:ns3="http://www.tekelec.com/sds/dsr/soap/"
xmlns:ns5="http://www.tekelec.com/sds/soap">
 <SOAP-ENV:Header></SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <ns2:sdsResult affected="0" error="0">
 </ns2:sdsResult>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Start a Transaction Immediately (fail)

This example attempts to immediately start a transaction but fails due to another client
having a transaction open.

Request:

POST / HTTP/1.1
Host: localhost:9090
Accept-Encoding: identity
Content-Length: 209
SOAPAction: ""
Content-type: text/xml; charset=”UTF-8”

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header/>
 <soapenv:Body>
 <startTransactionRequest>0</startTransactionRequest>
 </soapenv:Body>
</soapenv:Envelope>

Response:

POST / HTTP/1.1 200 OK
Server: gSOAP/2.7

Chapter 4
Start Transaction

4-10

Content-Type: text/xml; charset=utf-8; action=””
Content-Length: 595
Connection: keep-alive

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ns2="http://www.tekelec.com/sds/"
xmlns:ns4="http://www.tekelec.com/sds/dsr/"
xmlns:ns3="http://www.tekelec.com/sds/dsr/soap/"
xmlns:ns5="http://www.tekelec.com/sds/soap">
 <SOAP-ENV:Header></SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <ns2:sdsResult affected="0" error="1005">
 </ns2:sdsResult>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

4.6 Commit Transaction

4.6.1 Request
The <commitRequest> message is sent to commit a database transaction.

If the open transaction has one or more successful updates, then committing the transaction
causes all the database changes to be committed.

Note:

All previous updates, even if they received a successful error code, are not
committed to the database until the <commitRequest> is received.

Request Format

The request must be inserted between the <soapenv:Body> and </soapenv:Body> XML
tags of a SOAP request message, as shown in SOAP Request Messages.

<commitRequest> </commitRequest>

4.6.2 Response
The commit response is returned as a generic <ns2:sdsResult> response. This response
returns the result of the request to commit a database transaction.

If the response error code indicates success, then the database transaction was successfully
committed in the database. If any failure response is returned, then the database commit
failed. The commit operation causes the transaction to end regardless of whether any
updates were actually made to the database.

Chapter 4
Commit Transaction

4-11

Note:

The affected row count in the SOAP response is always 0. It does not
indicate how many rows were modified within the transaction.

Response Format

The response is displayed between the <soapenv:Body> and </soapenv:Body>
XML tags of a SOAP response message, as shown in SOAP Response Messages.

<ns2:sdsResult affected="affected" error="error"
[description="description"]>
</ns2:sdsResult>

Parameters

The parameters for all of the response commands are shown in SOAP Response
Messages.

Error Codes

Table 4-7 shows common error codes for the <commitResponse> message. See
SDS Response Message Error Codes for a full list of error codes.

Table 4-7 <commitResponse> Error Codes (SOAP)

Error Code Description

SUCCESS Transaction was successfully committed.

NO_ACTIVE_TXN A read or write transaction is not currently
open for this connection.

4.6.3 Examples
These examples show the SDS provisioning request and response contents that are
stored within the <soapenv:Body> or <SOAP-ENV:Body> tags. See Start Transaction
Examples for an example that contains the entire SOAP request/response text.

Commit a Transaction (success)

This example successfully commits a transaction.

Request:

<commitRequest> </commitRequest>

Response:

<ns2:sdsResult affected="15" error="0">
</ns2:sdsResult>

Chapter 4
Commit Transaction

4-12

Commit a Transaction that is not Open (fail)

This example attempts to commit a transaction but fails because a transaction was not open.

Request:

<commitRequest> </commitRequest>

Response:

<ns2:sdsResult affected="0" error="1009">
</ns2:sdsResult>

4.7 Rollback Transaction

4.7.1 Request
The <rollbackRequest> message is sent to abort a database transaction. Any updates
are rolled back before closing the transaction.

Request Format

The request must be inserted between the <soapenv:Body> and </soapenv:Body> XML
tags of a SOAP request message, as shown in SOAP Request Messages.

<rollbackRequest> </rollbackRequest>

4.7.2 Response
The rollback response is returned as a generic <ns2:sdsResult> response. This response
returns the results of rolling back (aborting) a database transaction. The rollback request
causes the transaction to end regardless of whether any updates were actually made to the
database.

Note:

The affected row count in the SOAP response is always 0. The affected row count
does not indicate how many rows were modified within the transaction.

If the response error code indicates success, then the database transaction was successfully
aborted. If any failure response is returned, then the database rollback failed.

Response Format

The response is displayed between the <soapenv:Body> and </soapenv:Body> XML
tags, as shown in SOAP Response Messages.

<ns2:sdsResult affected="affected" error="error" [description="description"]>
</ns2:sdsResult>

Chapter 4
Rollback Transaction

4-13

Response Parameters

The parameters for all of the response commands are shown in SOAP Response
Messages.

Response Error Codes

Table 4-8 lists common error codes for the rollback response. See SDS Response
Message Error Codes for a complete list of error codes.

Table 4-8 <rollback> Response Error Codes (SOAP)

Error Code Description

SUCCESS Transaction was successfully rolled back.

NO_ACTIVE_TXN A read or write transaction is already open on
this connection or an open transaction was
aborted prior to terminating the connection.

4.7.3 Examples
These examples show the SDS provisioning request and response contents that are
stored within the <soapenv:Body> or <SOAP-ENV:Body> tags. See the Start Transaction
Examples for examples that contain the entire SOAP request/response text.

Rollback a Transaction (success)

This example successfully rolls back a transaction.

Request:

<rollbackRequest> </rollbackRequest>

Response:

<ns2:sdsResult affected="15" error="0">
</ns2:sdsResult>

Rollback a Transaction that is not Open (fail)

This example attempts to rollback a transaction but fails because a transaction was
not open.

Request:

<rollbackRequest> </rollbackRequest>

Response:

<ns2:sdsResult affected="0" error="1009">
</ns2:sdsResult>

Chapter 4
Rollback Transaction

4-14

4.8 Insert Subscriber

4.8.1 Subscriber and Routing Data Concepts
The information in this section is applicable to all subscriber requests.

A routing entity contains the IMSI, MSISDN, or External Identifier value along with up to nine
destination names that refer to destination data, which contains FQDN and realm values
used for routing messages.

A subscriber is a group of related IMSI, MSISDN, and/or External Identifier routing entities
and an optional Account ID value. All routing entities within a subscriber have the same
destination values.

A standalone routing entity is a routing entity that is not assigned to any subscriber.

Each IMSI, MSISDN, or External Identifier routing entity is either a standalone routing entity
or is assigned to a single subscriber.

Note:

You can only add a subscriber to a subscriber table, if the Account ID, MSISDN,
IMSI, or External Identifier is not already in the table. If the table already contains
any of these values, the add function fails and an error condition report is generated
that contains the reason for the failure.

4.8.2 Insert Subscriber Request
The <insertSubscriberRequest> request provisions stand-alone IMSI and MSISDN
routing entities or groups of related IMSI/MSISDN routing entities. This is referred to as
subscriber data. This data contains relationships between IMSI and MSISDN routing entities
along with an optional Account ID value. Each routing entity contains up to eight destination
names. Each destination contains FQDN and realm values, which are used for routing
messages.

When the group="y" attribute is specified, the <insertSubscriberRequest> request
establishes relationships between IMSI, MSISDN and Account ID values. When adding a
new IMSI or MSISDN value to a subscriber, the <insertSubscriberRequest> request
creates a new IMSI or MSISDN routing entity. If any IMSI or MSISDN exists in the SDS
database, the request fails, regardless of the group="y" attribute specification.

After a subscriber is created, all subsequent requests can use any of the subscriber's IMSI,
MSISDN, or Account ID values to update, delete, or read the subscriber.

If the group="n" attribute is specified, the request establishes stand-alone entries of IMSI
and MSISDN.

The request can also be used to remove a destination value from existing IMSI and/or
MSISDN routing entities by specifying "none" as the destination name.

Semantic Rules (all requests)

• Each IMSI and MSISDN routing entity can be assigned to a maximum of 1 subscriber.

Chapter 4
Insert Subscriber

4-15

• All specified destination names must already exist in the database.

• Each destination name type can only be specified once.

Semantic Rules (requests that do not specify the group attribute or specify
group="n")

• The accountId, deleteAccountId, deleteImsi, and deleteMsisdn
parameters cannot be specified.

• All specified existing IMSI and MSISDN values must be for stand-alone routing
entities or must all be assigned to one subscriber. There cannot be a mixture of
stand-alone routing entities and routing entities that are part of a subscriber.

• At least one routing entity (IMSI or MSISDN) value must be specified within the
insertAddressList.

• A maximum of 10 routing entities (IMSI, MSISDN, or combinations) can be
specified within the insertAddressList.

• Att least one destination must be specified.

• All specified routing entities will be provisioned with the same destination value or
value.

Semantic Rules (requests that specify group="y")

• The accountId parameter can be specified.

• The deleteAccountId, deleteImsi, or deleteMsisdn parameters cannot be specified.

• All specified accountID, imsi, or msisdn values must be either be assigned to
the same subscriber, or they can exist in a stand-alone routing entity. After the
command successfully completes, all specified values are assigned to the same
subscriber. All routing entities must not exist in the SDS database.

• All account of the accountID, imsi, or msisdn values must also be assigned to
the same subscriber or either not assigned to any subscriber.

• At least one imsi, msisdn, or accountId value must be specified within the
insertAddressList.

• All of the destination tags and values are optional.

• The insertaddressList can have a maximum of one accountId, six imsi, six
msisdn values specified. If any of these limits are exceeded, the request fails.

• All accountId, imsi, and msisdn values specified within the
insertaddressList are associated with a new subscriber and all specified
routing entities will be provisioned with the specified destination values.

• Existing stand-alone or grouped routing entities cannot be added using the insert
subscriber request.

• If a new routing entity is created, at least one of its destination values must not be
equal to none.

• The insert subscriber request must have at least one IMSI or MSISDN routing
entity.

• The updated subscriber can have zero or one Account ID value, 0-6 IMSI values,
and 0-6 MSISDN values, as long as there is at least one IMSI or MSISDN value;
otherwise, the request fails.

Chapter 4
Insert Subscriber

4-16

Insert Subscriber Request Format

The request must be inserted between the <soapenv:Body> and </soapenv:Body> XML
tags as shown in SOAP Request Messages.

<insertSubscriberRequest [timeout="timeout"] [group="group"]>

 <insertAddressList>
 [<accountId>accountId</accountId>]
 [
 <imsi>imsi</msi>
 …
 [
 <imsi>imsi</msi>
]
 [
 <msisdn>msisdn</msisdn>
 …
 <msisdn>msisdn</msisdn>
]

 </insertAddressList>
 <destinationList>
 [<imshss>imshss</imshss>]
 [<ltehss>ltehss</ltehss>]
 [<pcrf>pcrf</pcrf>]
 [<ocs>ocs</ocs>]
 [<ofcs>ofcs</ofcs>]
 [<aaa>aaa</aaa>]
 [<userdef1>userdef1</userdef1>]
 [<userdef2>userdef2</userdef2>]
 </destinationList>
</updateSubscriberRequest>

Insert Subscriber Request Parameters

Table 4-9 <insertSubscriberRequest> Parameters (SOAP)

Parameter Description Values

timeout (Optional) The amount of time (in seconds)
to wait before being able to
perform a write if another
connection is performing a write,
or has a transaction open.
Clients waiting to write will be
processed in the order that their
requests were received.

If the request is being performed
within a transaction, this
parameter will have no effect, as
the client already has a
transaction open.

0 (return immediately if not
available) to 3600 seconds
(default is 0).

Chapter 4
Insert Subscriber

4-17

Table 4-9 (Cont.) <insertSubscriberRequest> Parameters (SOAP)

Parameter Description Values

group (Optional) Indicates if relationships between
a group of related IMSI and/or
MSISDN routing entities and
Account ID value should be
created/updated.

• y –Create new subscriber
relationships with specified
destinations.

• n –Create stand-alone
routing entities (default).

insertAddressList XML tag that contains a list of
addresses to be created or
updated.

Must have at least 1 of the
following tags and values:
• 0-1 – accountId
• 0-6 – imsi
• 0-6 – msisdn

accountId (Optional) A user-defined Account ID value
to add or update.

1 to 26 numeric digits.

imsi (Optional) An IMSI (specified in E.212
format) value to add or update.

10 to 15 numeric digits.

msisdn (Optional) An MSISDN (specified in E.164
international public
telecommunication numbering
plan format) value to add or
update.

8 to 15 numeric digits.

destinationList (Optional) XML tag that contains a list of
destination values to update or
set in the routing entity(s).

Can be empty, or contain any of
the following destination tags and
values: imshss, ltehss, pcrf, ocs,
ofcs, aaa, userdef1, and/or
userdef2.

imshss (Optional) The name of the IMS HSS
destination.

A string with 1 to 32 characters.

ltehss (Optional) The name of the LTE HSS
destination.

A string with 1 to 32 characters.

pcrf (Optional) The name of the PCRF
destination.

A string with 1 to 32 characters.

ocs (Optional) The name of the OCS
destination.

A string with 1 to 32 characters.

ofcs (Optional) The name of the OFCS
destination.

A string with 1 to 32 characters.

aaa (Optional) The name of the AAA server
destination.

A string with 1 to 32 characters.

userdef1 (Optional) The name of the first user
defined destination.

A string with 1 to 32 characters.

userdef2 (Optional) The name of the second user
defined destination.

A string with 1 to 32 characters.

4.8.3 Insert Subscriber Response
The insert subscriber response is returned as a generic <ns2:sdsResult>
response. This response returns the result of the request to provision subscriber
and/or routing entities. A single result applies to all routing entities supplied. Either all
subscriber and/or routing entities were successfully inserted, or no updates were
made.

Chapter 4
Insert Subscriber

4-18

If applying all of the provisioning changes results in no database records being modified
because the database already contained the updated values, the CONFLICT_FOUND error
code is returned and the number of affected records is 0.

If a subscriber is successfully created, the description field contains lists of created IMSI and
MSISDN values.

Insert Subscriber Response Format

The response is displayed between the <SOAP-ENV::Body> and </SOAP-ENV:Body> XML
tags as shown in SOAP Response Messages.

<ns2:sdsResult affected="affected" error="error" [description="description"]>
</ns2:sdsResult>

Insert Subscriber Response Parameters

The parameters for all of the response commands are shown in SOAP Response Messages.

Insert Subscriber Response Error Codes

Table 4-10 lists common error codes for this command. See SDS Response Message Error
Codes for a complete list of error codes.

Table 4-10 <insertSubscriberResponse> Error Codes (SOAP)

Error Code Description

SUCCESS The update request was successfully completed.

CONFLICT_FOUND The routing entity already exists in the database.

DEST_NOT_FOUND Destination name does not exist.

DEST_TYPE_MISMATCH Destination has a different destination type than
the desired destination type.

MULTIPLE_SUBSCRIBERS Specified parameters refer to multiple subscribers.

SUBSCRIBER_TOO_BIG Resulting subscriber would exceed 6 IMSI or 6
MSISDN limit.

ACCTID_UPDATE_PROHIBITED An attempt was made to change an accountId
without specifying <deleteAccountId> tag.

ROUTE_TYPE_MISMATCH Standalone and subscriber routes are not allowed
in same command.

DEL_ROUTE_NOT_PERMITTED Cannot delete last route from subscriber.

NO_ROUTES_SPECIFIED At least one MSISDN or IMSI must be specified.

ROUTE_DEST_MISMATCH Specified routes have different destinations.

DOMAIN_IDENTIFIER_NOT_FOUND Domain Identifier does not exist.

4.8.4 Insert Subscribers Examples
Below are examples of how to use the <insertSubscriberrequest> request and likely
response. Some of these examples are based on previous requests; therefore, the order of
the requests could be important.

These examples show the SDS provisioning request and response contents that are stored
within the <soapenv:Body> or <SOAP-ENV:Body> tags. See the Start Transaction Examples for
examples of the entire SOAP request/response text.

Chapter 4
Insert Subscriber

4-19

Insert new Add Stand-Alone Routing Entities (Success)

This example inserts new stand-alone IMSI and MSISDN routing entities and sets their
destination values to the specified values.

The result of this request is:

• New IMSI and MSISDN routing entities are created.

• All of the destination values for each routing entity are set to specified values.

Request:

<insertSubscriberRequest>
 <insertAddressList>
 <imsi>111111111100001</imsi>
 <imsi>111111111100002</imsi>
 <imsi>111111111100003</imsi>
 <msisdn>8004605500</msisdn>
 <msisdn>8004605503</msisdn>
 </insertAddressList>
 <destinationList>
 <ltehss>LTE_HSS_1</ltehss>
 </destinationList>
 </insertSubscriberRequest>

Result:

<ns2:sdsResult affected="5" error="0"
</ns2:sdsResult>

Insert Existing Stand-Alone Routing Entities with Different Destinations Failure

This example inserts existing stand-alone IMSI and MSISDN routing entities with new
destination values.

This request will fail with error code 1014 and the IMSI and MSISDN routing entities
are not updates with the specified values.

Request:

<insertSubscriberRequest>
 <insertAddressList>
 <imsi>111111111100001</imsi>
 <imsi>111111111100002</imsi>
 <imsi>111111111100003</imsi>
 <msisdn>8004605500</msisdn>
 </insertAddressList>
 <destinationList>
 <ltehss>LTE_HSS_4</ltehss>
 <aaa>AAA_4</aaa>
 </destinationList>
</insertSubscriberRequest>

Chapter 4
Insert Subscriber

4-20

Result:

<ns2:sdsResult affected="0" error="1014"
</ns2:sdsResult>

Create Subscriber Using Existing Routing Entities (Success)

This example inserts a subscriber using new routing entities that all have the same
destination values.

After this request is completed:

• A new subscriber is created and all of the routing entities are assigned to that subscriber

• A new subscriber is created with the specified Account ID, IMSI, and MSISDN values

• New IMSI and MSISDN routing entities are created with the specified destinations

Request:

<insertSubscriberRequest group=”y”>
 <insertAddressList>
 <accountID>11111222223333344444555556</accountId.
 <imsi>111111111100001</imsi>
 <imsi>111111111100002</imsi>
 <msisdn>8004605500</msisdn>
 </insertAddressList>
 <destinationList>
 </destinationList>
 <ltehss>LTE_HSS_4</ltehhs>
 <aaa>AAA_4</aaa>
 <destinationList>
</insertSubscriberRequest>

Result:

<ns2:sdsResult affected="1" error="0">
</ns2:sdsResult>

Create Subscriber Using New Routing Entities without Destination (Failure)

This example fails when creating a subscriber using new routing entities without specifying
the destination values.

No changes are made to the database because the request failed.

Request:

<insertSubscriberRequest group=”y”>
 <insertAddressList>
 <accountId>1111122222</accountId>
 <imsi>333333333300093</imsi>
 <imsi>333333333300094</imsi>
 <msisdn>9198675399</msisdn>
 </insertAddressList>
 <destinationList>

Chapter 4
Insert Subscriber

4-21

 </destinationList>
 </insertSubscriberRequest>

Result:

<ns2:sdsResult affected="0" error="2013" description=
”at least one destination must be specified”>
</ns2:sdsResult>

Create Subscriber Using Existing Routing Entities (Failure)

This example inserts a subscriber using existing routing entities.

The result of this request is that the request fails with error code 1014.

Request:

<insertSubscriberRequest group=”y”>
 <insertAddressList>
 <imsi>111111111100001</imsi>
 <imsi>111111111100002</imsi>
 <msisdn>8004605500</msisdn>
 </insertAddressList>
 <destinationList>
 <ltehss>LTE_HSS_4</ltehss>
 <aaa>AAA_4</aaa>
 </destinationList>
 </insertSubscriberRequest>

Result:

<ns2:sdsResult affected="0" error="1014">
</ns2:sdsResult>

Add Account ID to Existing Subscriber (Failure)

This example adds an Account ID to an existing subscriber. Any of the subscriber IMSI
or MSISDN values can be used. For this example, the MSISDN value is used.

The result of this request is that the request fails with error code 1014.

Request:

<insertSubscriberRequest group=”y”>
 <insertAddressList>
 <accountId>80044400001234567890111112</accountId>
 <msisdn>8004605500</msisdn>
 </insertAddressList>
 <destinationList>
 </destinationList>
</insertSubscriberRequest>

Chapter 4
Insert Subscriber

4-22

Result:

<ns2:sdsResult affected="0" error="1014">
</ns2:sdsResult>

Modify Destinations for Existing Subscriber (Failure)

This example modifies one of the destination values for an existing subscriber. Any of the
subscriber's IMSI, MSISDN or Account ID values can be used. For this example, an IMSI
value is used.

The result of this request is that the request fails with error code 1014.

Request:

<insertSubscriberRequest>
 <insertAddressList>
 <imsi>111111111100002</imsi>
 </insertaddressList>
 <destinationList>
 <ltehss>LTE_HSS_99</ltehss>
 </destinationList>
</insertSubscriberRequest>

Response:

<ns2:sdsResult affected="0" error="1014"
</ns2:sdsResult>

4.9 Update Subscriber

4.9.1 Subscriber and Routing Data
A routing entity contains the IMSI or MSISDN value along with up to eight destination names
that refer to destination data which contains FQDN and realm values that are used for routing
messages.

A subscriber is a group of related IMSI and/or MSISDN routing entities and an optional
Account ID value. All routing entities within a subscriber have the same destination values.

A stand-alone routing entity is a routing entity that is not assigned to any subscriber.

Each IMSI or MSISDN routing entity is either a stand-alone routing entity or is assigned to a
single subscriber.

Note:

You can only add a subscriber to a subscriber table, if the Account ID, MSISDN, or
IMSI is not already in the table. If the table already contains any of these values, the
add function fails and an error condition report is generate that contains the reason
for the failure.

Chapter 4
Update Subscriber

4-23

4.9.2 Request
The <updateSubscriber> request provisions IMSI, MSISDN, and External Identifier
routing data and can provision subscriber data. See Subscriber and Routing Data for a
description of subscriber and routing data.

This request provisions standalone IMSI, MSISDN, and External Identifier routing
entities and/or subscriber data. Each routing entity contains up to nine destination
names. Each destination contains FQDN and realm values, which are used for routing
messages.

When the group="y" attribute is specified, the request establishes or removes
relationships between Account ID, IMSI, MSISDN, and External Identifier values.
When adding new Account ID, IMSI, MSISDN, or External Identifier values to a
subscriber, the request can also create a new IMSI, MSISDN, or External Identifier
routing entity. When an IMSI, MSISDN, or External Identifier value is removed from a
subscriber, the request deletes IMSI, MSISDN, or External Identifier routing entities.
Once a subscriber is created, all subsequent subscriber requests can use any of the
subscriber's Account ID, IMSI, MSISDN, or External Identifier values to update, delete
or read the subscriber.

Note:

You can only add a subscriber to a subscriber table, if the Account ID, IMSI,
MSISDN, or External Identifier is not already in the table. If the table already
contains any of these values, the add function fails and an error condition
report is generate that contains the reason for the failure.

The request can also be used to update destination names in existing routing entities
or create new routing entities, regardless of whether the group="y" attribute is
specified. These destination changes are applied to all specified IMSI, MSISDN, and
External Identifier routing entities. If all of the specified Account ID, IMSI, MSISDN,
and External Identifier values are assigned to one subscriber, the destination changes
are also applied to all of the subscriber's routing entities.

If the group="y" attribute is specified, then the changes are also applied to any
specified new or existing standalone routing entities, which are assigned to the
subscriber.

The request can also be used to remove a destination value from existing IMSI and/or
MSISDN and/or External Identifier routing entities by specifying "none" as the
destination name.

Semantic Rules (All Requests)

• Each IMSI, MSISDN, and External Identifier routing entity can be assigned to a
maximum of 1 subscriber.

• All specified destination names must already exist in the database.

• Each destination name type can only be specified once.

• Any existing destination(s) for a routing entity will not be changed/removed if not
specified in the request.

Chapter 4
Update Subscriber

4-24

• Specifying a destination name of "none" removes the association of that destination
from the specified routing entity(s).

Semantic Rules (requests that do not specify the group attribute or specify
group="n")

• The accountId, deleteAccountId, deleteImsi, deleteMsisdn, and
deleteExternalIdentifier parameters cannot be specified.

• All specified existing IMSI, MSISDN, and External Identifier values must be for
standalone routing entities or must all be assigned to one subscriber. There cannot be a
mixture of standalone routing entities and routing entities that are part of a subscriber.

• At least one routing entity (IMSI, MSISDN, or External Identifier) value must be specified
within the addressList.

• A maximum of 10 routing entities (IMSI, MSISDN, External Identifier, or combinations)
can be specified within the addressList.

• At least one destination must be specified within the destionationList.

• All specified routing entities will be provisioned with the same destination value(s).

Semantic Rules (requests that specify group="y")

• The accountId, deleteAccountId, deleteImsi, deleteMsisdn, and
deleteExternalIdentifier parameters can be specified.

• All specified, existing accountID, imsi, msisdn, or externalIdentifier values
must be assigned to the same subscriber or they can exist in a standalone routing entity.
After the command successfully completes, all specified values are assigned to the same
subscriber.

• All specified addresses within the deleteAccountId, deleteImsi, deleteMsisdn,
and deleteExternalIdentifier tags that exist in the database must be assigned to
the same subscriber. All specified addresses within the addressList (Account ID, IMSI,
MSISDN, or External Identifier values) must also be assigned to the same subscriber or
not assigned to any subscriber.

• At least one imsi, msisdn, externalIdentifier, or accountId value must be
specified within the addressList.

• The destinationList tag is mandatory, but no values are required within it. This
allows the user to add an Account ID to an existing MSISDN and/or IMSI and or External
Identifier values. This allows the user to create a Subscriber using existing MSISDN/IMSI/
External Identifier and also allows the user to create a Subscriber with a mix of existing
MSISDN/IMSI/External Identifier and new MSISDN/IMSI/External Identifier. In this case
same destination(s) has to set to all routing entities.

• The addressList can have a maximum of one accountId, six imsi, six msisdn, ten
externalIdentifier, one deleteAccountId, six deleteImsi, and/or six
deleteMsisdn values specified. If any of these limits are exceeded, the request fails.

• All accountId, imsi, msisdn, and externalIdentifier values specified within the
addressList that are not currently associated with a subscriber will be assigned to the
same subscriber. They are added to an existing subscriber or new subscriber.

• If a new subscriber is being created with all new routing entities, all specified routing
entities will be provisioned with the specified destination values

Chapter 4
Update Subscriber

4-25

• If a new subscriber is being created with at least one existing standalone routing
entity, all destination values from existing standalone routing entities must be the
same prior to applying any specified destination changes. All new routing entities
will inherit their destination values from an existing standalone routing entity with
the applied destination changes.

• If existing standalone routing entities are being added to an existing subscriber,
the destination values in each standalone routing entity must match the destination
values for the subscriber (extracted from any of the subscriber routing entities)
prior to applying any specified destination changes.

• If new routing entities are being added to an existing subscriber, the new routing
entities will inherit the destination values for the subscriber (extracted from any of
the subscriber routing entities).

• If a new routing entity is being created, at least one of its destination values cannot
be equal to "none".

• The updated subscriber must have at least one IMSI, MSISDN, or External
Identifier routing entity.

• The updated subscriber can have 0 or 1 accountID values, 0-6 imsi values, and
0-6 msisdn values, as long as there is at least 1 IMSI, MSISDN, or External
identifier value. If the result of the update (deleting and then adding Account ID,
IMSI and/or MSISDN and/or External Identifier values) would cause too many
Account ID, IMSI, MSISDN, External Identifier values, the request fails.

• The subscriber Account ID value can be updated only if it is currently null or
deleted within the request (as specified by the deleteAccountId parameter).

• If any of the deleteAccountId, deleteImsi, deleteMsisdn, or
deleteExternalIdentifier values do not exist in the database, they are
ignored. If nothing else changes for the subscriber, then NO_UPDATES is
returned.

• If any of the deleteAccountId, deleteImsi, deleteMsisdn, or
deleteExternalIdentifier values exist in the database, they must be
assigned to the subscriber being updated or the command fails.

• If any of the deleteImsi, deleteMsisdn, or deleteExternalIdentifier
values exist, the routing entity is deleted unless it is the last IMSI, MSISDN, or
External Identifier routing entity for the subscriber, in which case the command
fails.

Request Format

The request must be inserted between the <soapenv:Body> and </
soapenv:Body> XML tags as shown in SOAP Request Messages.

<updateSubscriberRequest [timeout="timeout"] [group="group"]>
 <addressList>
 [<deleteAccountId>deleteAccountId</deleteAccountId>]
 [
 <deleteImsi>deleteImsi</deleteImsi>
 …
 <deleteImsi>deleteImsi</deleteImsi>
]
 [
 <deleteMsisdn>deleteMsisdn</deleteMsisdn>

Chapter 4
Update Subscriber

4-26

 …
 <deleteMsisdn>deleteMsisdn</deleteMsisdn>
]
 [
 <deleteExternalId>deleteExtIdentifier<deleteExternalId>
 …
 <deleteExternalId>deleteExtIdentifier</deleteExternalId>
]
 [<accountId>accountId</accountId>]
 [
 <imsi>imsi</imsi>
 …
 <imsi>imsi</imsi>
]
 [
 <msisdn>msisdn</msisdn>
 …
 <msisdn>msisdn</msisdn>
]
 [
 <externalId>extIdentifier</externalId>
 …
 <externalId>extIdentifier</externalId>
]
 </addressList>
 <destinationList>
 [<imshss>imshss</imshss>]
 [<ltehss>ltehss</ltehss>]
 [<pcrf>pcrf</pcrf>]
 [<ocs>ocs</ocs>]
 [<ofcs>ofcs</ofcs>]
 [<aaa>aaa</aaa>]
 [<userdef1>userdef1</userdef1>]
 [<userdef2>userdef2</userdef2>]
 [<mtchss>mtchss</mtchss>]
 </destinationList>
</updateSubscriberRequest>

Chapter 4
Update Subscriber

4-27

Request Parameters

Table 4-11 <updateSubscriberRequest> Parameters (SOAP)

Parameter Description Values

timeout (Optional) The amount of time (in
seconds) to wait before being
able to perform a write if
another connection is
performing a write, or has a
transaction open. Clients
waiting to write are processed
in the order that their requests
were received.

If the request is being
performed within a transaction,
this parameter will have no
effect, as the client already
has a transaction open.

0 (return immediately if not
available) to 3600 seconds
(default is 0).

group (Optional) Indicates if relationships
between a group of related
IMSI and/or MSISDN and/or
External Identifier routing
entities and Account ID value
should be created/updated.

y – Create new or update
existing subscriber
relationships and update
destinations.

n – Only update destinations,
not relationships between
routing entities (default).

addressList XML tag that contains a list of
addresses to be created or
updated.

Must have at least 1 of the
following tags and values:
• 0-1 – deleteAccountId
• 0-6 – deleteImsi
• 0-6 – deleteMsisdn
• 0-10 –

deleteExternalIdentifier
• 0-1 – accountId
• 0-6 – imsi
• 0-6 – msisdn
• 0-10 – externalIdentifier

deleteAccountId (Optional) A user-defined Account ID
value to delete.

1 to 26 numeric digits.

deleteImsi (Optional) An IMSI (specified in E.212
format) value to delete.

10 to 15 numeric digits.

deleteMsisdn (Optional) An MSISDN (specified in
E.164 international public
telecommunication numbering
plan format) value to delete.

8 to 15 numeric digits.

deleteExternalId (Optional) An ExternalIdentifier (specified
in NAI format)value to delete.

A string with 3 to 257
characters.

accountId (Optional) A user-defined Account ID
value to add or update.

1 to 26 numeric digits.

imsi (Optional) An IMSI (specified in E.212
format) value to add or update.

10 to 15 numeric digits.

Chapter 4
Update Subscriber

4-28

Table 4-11 (Cont.) <updateSubscriberRequest> Parameters (SOAP)

Parameter Description Values

msisdn (Optional) An MSISDN (specified in
E.164 international public
telecommunication numbering
plan format) value to add or
update.

8 to 15 numeric digits.

ExternalId (Optional) An ExternalIdentifier (specified
in NAI format)value to add or
update.

A string with 3 to 257
characters.

destinationList (Optional) XML tag that contains a list of
destination values to update or
set in the routing entity(s).

Can be empty, or contain any
of the following destination
tags and values: imshss,
ltehss, pcrf, ocs, ofcs, aaa,
userdef1, userdef2 and/or
mtchss.

imshss (Optional) The name of the IMS HSS
destination.

A string with 1 to 32
characters.

ltehss (Optional) The name of the LTE HSS
destination.

A string with 1 to 32
characters.

pcrf (Optional) The name of the PCRF
destination.

A string with 1 to 32
characters.

ocs (Optional) The name of the OCS
destination.

A string with 1 to 32
characters.

ofcs (Optional) The name of the OFCS
destination.

A string with 1 to 32
characters.

aaa (Optional) The name of the AAA server
destination.

A string with 1 to 32
characters.

userdef1 (Optional) The name of the first user
defined destination.

A string with 1 to 32
characters.

userdef2 (Optional) The name of the second user
defined destination.

A string with 1 to 32
characters.

mtchss (Optional) The name of the MTCHSS
destination.

A string with 1 to 32
characters.

4.9.3 Response
The update subscriber response is returned as a generic <ns2:sdsResult> response. This
response returns the result of the request to provision subscriber and/or routing entities. A
single result applies to all routing entities supplied. Either all subscriber and/or routing entities
were successfully updated, or no updates were made.

If applying all of the provisioning changes results in no database records being modified
because the database already contained the updated values, then NO_UPDATES error code
is returned and the number of affected records is 0.

If a subscriber is successfully created or updated, the description field contains lists of
deleted, created and changed IMSI, MSISDN, and External Identifier values.

Chapter 4
Update Subscriber

4-29

Response Format

The response is displayed between the <soapenv:Body> and </soapenv:Body>
XML tags as shown in SOAP Response Messages.

<ns2:sdsResult affected="affected" error="error"
[description="description"]>
</ns2:sdsResult>

Response Parameters

The parameters for all of the response commands are shown in SOAP Response
Messages.

Response Error Codes

Table 4-12 lists common error codes for this command. See SDS Response Message
Error Codes for a complete list of error codes.

Table 4-12 <updateSubscriberResponse Error Codes (SOAP)

Error Code Description

SUCCESS The update request was successfully
completed.

NO_UPDATES The request does not have an update to the
database.

DEST_NOT_FOUND Destination name does not exist.

DEST_TYPE_MISMATCH Destination has a different destination type
than the desired destination type.

MULTIPLE_SUBSCRIBERS Specified parameters refer to multiple
subscribers.

SUBSCRIBER_TOO_BIG Resulting subscriber would exceed 6 IMSI, 6
MSISDN, or 10 External Identifier limit.

ACCTID_UPDATE_PROHIBITED An attempt was made to change an
accountId without specifying
<deleteAccountId> tag.

ROUTE_TYPE_MISMATCH Standalone and subscriber routes are not
allowed in same command.

DEL_ROUTE_NOT_PERMITTED Cannot delete last route from subscriber.

NO_ROUTES_SPECIFIED At least one MSISDN or IMSI must be
specified.

ROUTE_DEST_MISMATCH Specified routes have different destinations.

DOMAIN_IDENTIFIER_NOT_FOUND Domain Identifier does not exist.

4.9.4 Examples
Below are examples of how to use the <updateSubscriber> request and likely
response. Some of these examples are based on previous requests; hence, the order
of the requests could be important.

Chapter 4
Update Subscriber

4-30

These examples show the SDS provisioning request and response contents that are stored
within the <soapenv:Body> or <SOAP-ENV:Body> tags. See the Start Transaction Examples for
examples of the entire SOAP request/response text.

Add Standalone Routing Entities

This example creates new standalone IMSI and MSISDN routing entities and sets their
destination values to the specified values.

The result of this request is:

• New IMSI and MSISDN routing entities are created.

• All of the destination values for each routing entity are set to specified values.

Request:

<updateSubscriberRequest>
 <addressList>
 <imsi>111111111100001</imsi>
 <imsi>111111111100002</imsi>
 <imsi>111111111100003</imsi>
 <msisdn>8004605500</msisdn>
 <msisdn>8004605503</msisdn>
 </addressList>
 <destinationList>
 <ltehss>LTE_HSS_1</ltehss>
 </destinationList>
</updateSubscriberRequest>

Response:

<ns2:sdsResult affected="5" error="0"
</ns2:sdsResult>

Update Standalone Routing Entities Destinations

This example updates existing standalone IMSI and MSISDN routing entities with new
destination values.

Note:

This request does not update all IMSI values that were specified in the previous
request.

The result of this request is that the IMSI and MSISDN routing entities are updated with
specified values.

Request:

<updateSubscriberRequest>
 <addressList>
 <imsi>111111111100001</imsi>
 <imsi>111111111100002</imsi>

Chapter 4
Update Subscriber

4-31

 <imsi>111111111100003</imsi>
 <msisdn>8004605500</msisdn>
 </addressList>
 <destinationList>
 <ltehss>LTE_HSS_4</ltehss>
 <aaa>AAA_4</aaa>
 </destinationList>
</updateSubscriberRequest>

Response:

<ns2:sdsResult affected="4" error="0"
</ns2:sdsResult>

This example updates existing standalone IMSI, MSISDN, and External Identifier
routing entities with new destination values.

The result of this request is that the IMSI, MSISDN, and External Identifier routing
entities are updated with specified values.

Request:

<updateSubscriberRequest>
 <addressList>
 <imsi>111111111100001</imsi>
 <imsi>111111111100002</imsi>
 <imsi>111111111100003</imsi>
 <msisdn>8004605500</msisdn>
 <externalId>user@oracle.com</externalId>
 <externalId>abc@test.com</externalId>
 </addressList>
 <destinationList>
 <ltehss>LTE_HSS_4</ltehss>
 <aaa>AAA_4</aaa>
 </destinationList>
</updateSubscriberRequest>

Response:

<ns2:sdsResult affected="6" error="0"
</ns2:sdsResult>

Create Subscriber Using Existing Routing Entities (Success)

This example creates a subscriber using existing routing entities that all have the
same destination values.

After this request is completed, a new subscriber is created and all of the routing
entities are assigned to that subscriber.

Request:

<updateSubscriberRequest group=”y”>
 <addressList>

Chapter 4
Update Subscriber

4-32

 <imsi>111111111100001</imsi>
 <imsi>111111111100002</imsi>
 <msisdn>8004605500</msisdn>
 </addressList>
 <destinationList>
 </destinationList>
</updateSubscriberRequest>

Response:

<ns2:sdsResult affected="1" error="0">
</ns2:sdsResult>

Create Subscriber Using Existing Routing Entities (Failure)

This example fails when creating a subscriber using existing routing entities because the
existing routing entities have different destination values.

No changes are made to the database because the request failed.

Request:

<updateSubscriberRequest group=”y”>
 <addressList>
 <imsi>111111111100003</imsi>
 <msisdn>8004605503</msisdn>
 </addressList>
 <destinationList>
 </destinationList>
</updateSubscriberRequest>

Response:

<ns2:sdsResult affected="0" error="2029" description=”all routes must have
the same destination values”>
</ns2:sdsResult>

Add Account ID to Existing Subscriber

This example adds an Account ID to an existing subscriber. Any of the subscriber IMSI or
MSISDN values can be used. For this example, the MSISDN value is used.

The result of this request is that the subscriber will have an Account ID value.

Request:

<updateSubscriberRequest group=”y”>
 <addressList>
 <accountId>80044400001234567890111112</accountId>
 <msisdn>8004605500</msisdn>
 </addressList>
 <destinationList>
 </destinationList>
</updateSubscriberRequest>

Chapter 4
Update Subscriber

4-33

Response:

<ns2:sdsResult affected="1" error="0">
</ns2:sdsResult>

Modify Destinations for Existing Subscriber

This example modifies one of the destination values for an existing subscriber. Any of
the subscriber's Account ID, IMSI, MSISDN, or External Identifier values can be used.
For this example, an IMSI value is used.

Note:

It does not matter if group="y" is specified. The same changes are always
applied to the whole subscriber.

The result of this request is that all of the subscriber's IMSI, MSISDN, and External
Identifier routing entities will have a new destination value.

Request:

<updateSubscriberRequest>
 <addressList>
 <imsi>111111111100002</imsi>
 </addressList>
 <destinationList>
 <ltehss>LTE_HSS_99</ltehss>
 </destinationList>
</updateSubscriberRequest>

Response:

<ns2:sdsResult affected="3" error="0"
</ns2:sdsResult>

Replace MSISDN value

This example replaces an MSISDN value for an existing subscriber. The new MSISDN
routing entity inherits the destination values from an old IMSI or MSISDN routing entity.
It does not matter which of the subscriber's routing entities is used. All entities have
the same destination values.

The result of this request is:

• The old MSISDN routing entity is deleted from the database

• The new MSISDN routing entity is added to the database, its destination values
are set to the subscriber destination values, and the new MSISDN value is
assigned to the subscriber (relationships are established).

Chapter 4
Update Subscriber

4-34

Note:

If the new MSISDN routing entity already exists in the database, and it has the
same destination values as the subscriber, the only change is that the routing
entity is assigned to the subscriber.

Request:

<updateSubscriberRequest group=”y”>
 <addressList>
 <deleteMsisdn>8004605500</deleteMsisdn>
 <msisdn>8884605500</msisdn>
 </addressList>
 <destinationList>
 </destinationList>
</updateSubscriberRequest>

Response:

<ns2:sdsResult affected="1" error="0">
</ns2:sdsResult>

Replace Account ID, Two IMSI Values, and One MSISDN Value

This example replaces several identification values for an existing subscriber. The new IMSI,
MSISDN, and External Identifier routing entities inherit the destination values from the old
IMSI, MSISDN, and External Identifier routing entities. It does not matter which of the
Subscriber's routing entities is used. All routing entities have the same destination values.

The result of this request is:

• The old IMSI, MSISDN, and External Identifier routing entities are deleted from the
database.

• The new IMSI, MSISDN, and External Identifier routing entities are added to the
database, their destination values are set to the subscriber's destination values, and the
routing entities are assigned to the subscriber (relationships are established).

Note:

If the new IMSI, MSISDN, and External Identifier routing entities already exist in
the database and they have the same destination values as the subscriber, the
only change is that the new IMSI, MSISDN, and External Identifier values are
assigned to the subscriber.

• The subscriber Account ID value is changed.

Request:

<updateSubscriberRequest>
 <addressList>
 <deleteImsi>111111111100001</deleteImsi>
 <deleteImsi>111111111100002</deleteImsi>

Chapter 4
Update Subscriber

4-35

 <deleteMsisdn>8884605500</deleteMsisdn>
 <imsi>888888888800001</imsi>
 <imsi>888888888800002</imsi>
 <msisdn>8884605555</msisdn>
 </addressList>
 <destinationList>
 </destinationList>
</updateSubscriberRequest>

Response:

<ns2:sdsResult affected="1" error="0">
</ns2:sdsResult>

Create Subscriber Using New Routing Entities (Success)

This example creates a subscriber using new routing entities with specified
destinations.

The result of this request is:

• A new subscriber is created with the specified Account ID, IMSI and MSISDN
values.

• New IMSI and MSISDN routing entities are created with the specified destinations.

Request:

<updateSubscriberRequest group=”y”>
 <addressList>
 <accountId>11111222223333344444555556</accountId>
 <imsi>333333333300001</imsi>
 <imsi>333333333300002</imsi>
 <msisdn>9198675309</msisdn>
 </addressList>
 <destinationList>
 <ltehss>LTE_HSS_3</ltehss>
 <aaa>AAA_3</aaa>
 </destinationList>
</updateSubscriberRequest>

Response:

<ns2:sdsResult affected="1" error="0">
</ns2:sdsResult>

This example creates a subscriber using new routing entities with specified
destinations.

The result of this request is:

• A new subscriber is created with the specified Account ID, IMSI, MSISDN, and
External Identifier values.

• New IMSI, MSISDN, and External Identifier routing entities are created with the
specified destinations.

Chapter 4
Update Subscriber

4-36

Request:

<updateSubscriberRequest group=”y”>
 <addressList>
 <accountId>11111222223333344444555556</accountId>
 <imsi>333333333300001</imsi>
 <imsi>333333333300002</imsi>
 <msisdn>9198675309</msisdn>
 <externalId>user@oracle.com</externalId>
 <externalId>abc@test.com</externalId>
 </addressList>
 <destinationList>
 <ltehss>LTE_HSS_3</ltehss>
 <aaa>AAA_3</aaa>
 </destinationList>
</updateSubscriberRequest>

Response:

<ns2:sdsResult affected="1" error="0">
</ns2:sdsResult>

Create Subscriber Using New Routing Entities (Failure)

This example fails when creating a subscriber using new routing entities because no
destinations were specified.

No changes are made to the database because the request failed.

Request:

<updateSubscriberRequest group=”y”>
 <addressList>
 <accountId>1111122222</accountId>
 <imsi>333333333300003</imsi>
 <imsi>333333333300004</imsi>
 <msisdn>9198675309</msisdn>
 </addressList>
 <destinationList>
 </destinationList>
</updateSubscriberRequest>

Response:

<ns2:sdsResult affected="0" error="2013" description=”at least one
destination must be specified”>
</ns2:sdsResult>

Chapter 4
Update Subscriber

4-37

4.10 Delete Subscriber

4.10.1 Request
The <deleteSubscriberRequest> request removes IMSI, MSISDN, and External
Identifier routing data and can remove subscriber data. See Subscriber and Routing
Data for a description of subscriber and routing data. Each routing entity contains up to
nine destination names. Each destination contains FQDN and realm values.

If the group="y" attribute is specified, then the request deletes all data associated
with the subscriber. The Account ID, all relationships, and all IMSI, MSISDN, and
External Identifier routing entities that were assigned to the subscriber are deleted.

If group="y" is not specified or if group="n" is specified, only IMSI, MSISDN, and
External Identifier routing entities are deleted. If the IMSI or MSISDN value is assigned
to a subscriber and there is at least one more IMSI, MSISDN, or External Identifier
value assigned to the subscriber, then the IMSI, MSISDN, or External Identifier value
is removed from the subscriber.

Note:

The last IMSI, MSISDN, or External Identifier value cannot be removed from
a subscriber. The user must delete the whole subscriber by specifying the
group="y" attribute.

Semantic Rules (requests that do not specify the group attribute or specify
group="n")

• All specified imsi, msisdn, or extenderIdentifier values must be assigned
to one subscriber or exist as a standalone routing entity.

• The accountID parameter cannot be specified.

• At least one routing entity (IMSI, MSISDN, or External Identifier) must be specified.

• A maximum of 10 routing entities (IMSI, MSISDN, External Identifier, or
combinations of the two) can be specified.

• The last IMSI, MSISDN, or External Identifier for a subscriber cannot be deleted.
Use group="y" to delete the whole subscriber.

Semantic Rules (requests that specify group="y")

• All specified accountId, imsi, msisdn, or extenderIdentifier values must
be assigned to the same subscriber. The specified imsi or msisdn values cannot
exist in a standalone routing entity.

• The accountId parameter can be specified.

• At least one accountId, imsi, msisdn, or extenderIdentifier value must
be specified.

• A maximum of six imsi, six msisdn, ten extenderIdentifier, and one
accountId values can be specified.

Chapter 4
Delete Subscriber

4-38

Request Format

The request must be inserted between the <soapenv:Body> and </soapenv:Body> XML
tags, as shown in SOAP Request Messages.

<deleteSubscriberRequest [timeout="timeout"] [group="group"]>
 <addressList>
 [
 <accountId>accountId</accountId>
]
 [
 <imsi>imsi</imsi>
 …
 <imsi>imsi</imsi>
]
 [
 <msisdn>msisdn</msisdn>
 …
 <msisdn>msisdn</msisdn>
]
 [
 <externalId>extId</externalId>
 …
 <externalId>extId</externalId>
]
 </addressList>
</deleteSubscriberRequest>

Request Parameters

Table 4-13 <deleteSubscriberRequest> Parameters (SOAP)

Parameter Description Values

timeout (Optional) The amount of time (in seconds)
to wait before being able to
perform a write if another
connection is performing a write,
or has a transaction open.
Clients waiting to write will be
processed in the order that their
requests were received.

If the request is being performed
within a transaction, this
parameter will have no effect, as
the client already has a
transaction open.

0 (return immediately if not
available) to 3600 seconds
(default is 0).

group (Optional) Indicates if all of the subscriber’s
data should be deleted or just
specified IMSI, MSISDN, or
Extender Identifier routing
entities.

y - Delete subscriber and all of
its IMSI, MSISDN, and Extender
Identifier routing entities.

n - Only delete specified IMSI,
MSISDN, and Extender Identifier
routing entities (default).

Chapter 4
Delete Subscriber

4-39

Table 4-13 (Cont.) <deleteSubscriberRequest> Parameters (SOAP)

Parameter Description Values

accountId (Optional) A user-defined Account ID value
to delete.

1 to 26 numeric digits.

imsi (Optional) An IMSI (specified in E.212
format) value to delete.

10 to 15 numeric digits.

msisdn (Optional) An MSISDN (specified in E.164
format) value to delete.

8 to 15 numeric digits.

externalId (Optional) An External Identifier (specified
in NAI format) value to delete.

A string with 3 to 257 characters.

4.10.2 Response
The delete Subscriber response is returned as a generic <ns2:sdsResult>
response. This response returns the result of the request to delete subscriber and/or
routing entities. A single result applies to all routing entities supplied. Either all
subscriber and/or routing entities were successfully deleted, or no deletes were made.

If applying all of the delete changes results in no routing entities being deleted
(because the database already did not contain the specified values), the
NO_UPDATES error code is returned and the number of affected records is 0.

If a subscriber is successfully deleted, the description field contains lists of deleted
IMSI, MSISDN, and External Identifier values.

Response Format

The response is displayed between the <soapenv:Body> and </soapenv:Body>
XML tags, as shown in SOAP Response Messages.

<ns2:sdsResult affected="affected" error="error"
[description="description"]>
</ns2:sdsResult>

Response Error Codes

Table 4-14 displays common error codes for the <deleteSubscriber> response. See
SDS Response Message Error Codes for a full list of error codes.

Table 4-14 <deleteSubscriberResponse> Error Codes (SOAP)

Error Code Description

SUCCESS The delete request was successfully
completed.

NO_UPDATES The record does not exist in the database.

MULTIPLE_SUBSCRIBERS Specified parameters refer to multiple
subscribers.

ROUTE_TYPE_MISMATCH Standalone and subscriber routes are not
allowed in same command.

Chapter 4
Delete Subscriber

4-40

Table 4-14 (Cont.) <deleteSubscriberResponse> Error Codes (SOAP)

Error Code Description

DEL_ROUTE_NOT_PERMITTED The last route from a subscriber cannot be
deleted.

4.10.3 Examples
These examples show the SDS provisioning request and response contents that are stored
within the <soapenv:Body> or <SOAP-ENV:Body> tags. See Start Transaction Examples for an
example of the whole SOAP request/response text.

Delete Standalone Routing Entities

This example deletes standalone IMSI and MSISDN routing entities.

Request:

<deleteSubscriberRequest>
 <addressList>
 <imsi>111111111100021</imsi>
 <imsi>111111111100022</imsi>
 <msisdn>8004605520</msisdn>
 </addressList>
</deleteSubscriberRequest>

Response:

<ns2:sdsResult affected="3" error="0">
</ns2:sdsResult>

Delete Several Routing Entities

This example successfully deletes two standalone IMSI routing entities. Other IMSI values
were not found and were not deleted.

Request:

<deleteSubscriberRequest>
 <addressList>
 <imsi>777777777777777</imsi>
 <imsi>111111111100001</imsi>
 <imsi>111111111100002</imsi>
 <imsi>888888888888888</imsi>
 </addressList>
</deleteSubscriberRequest>

Response:

<ns2:sdsResult affected="2" error="0">
</ns2:sdsResult>

Chapter 4
Delete Subscriber

4-41

Delete Routing Entities Assigned to the Same Subscriber

This example deletes IMSI and MSISDN routing entities that are assigned to the same
subscriber. The example assumes that the subscriber has at least one more routing
entity other than the specified values.

Request

<deleteSubscriberRequest>
 <addressList>
 <imsi>111111111100002</imsi>
 <msisdn>8004605500</msisdn>
 </addressList>
</deleteSubscriberRequest>

Response:

<ns2:sdsResult affected="2" error="0”>
</ns2:sdsResult>

Delete Last Routing Entity for a Subscriber (Success)

This example successfully deletes the subscriber and all IMSI and MSISDN routing
entities assigned to the subscriber. Any of the subscriber's Account ID, MSISDN or
IMSI values can be specified. In this example, all of the IMSI and MSISDN values are
specified even though only 1 value is required.

Request:

<deleteSubscriberRequest timeout="10" group=”y”>
 <addressList>
 <imsi>111111111100001</imsi>
 <imsi>111111111100002</imsi>
 <msisdn>8004605500</msisdn>
 </addressList>
</deleteSubscriberRequest>

Response:

<ns2:sdsResult affected="1" error="0”>
</ns2:sdsResult>

Delete Last Routing Entity for a Subscriber (Failure)

This example attempts to delete IMSI and MSISDN routing entities that are assigned
to the same subscriber. The example fails because the subscriber does not have any
more routing entities.

No changes are made to the database because the request failed.

Request:

<deleteSubscriberRequest timeout="10">
 <addressList>

Chapter 4
Delete Subscriber

4-42

 <imsi>111111111100001</imsi>
 <imsi>111111111100002</imsi>
 <msisdn>8004605500</msisdn>
 </addressList>
</deleteSubscriberRequest>

Response:

<ns2:sdsResult description=”cannot delete the last route from subscriber"
affected="0" error="2027">
</ns2:sdsResult>

Delete a Subscriber (Success)

This example successfully deletes the subscriber and all IMSI and MSISDN routing entities
assigned to the subscriber. Any of the subscriber's Account ID, MSISDN, or IMSI values can
be specified. In this example, the Account ID is specified.

Request:

<deleteSubscriberRequest timeout="10" group=”y”>
 <addressList>
 <accountId>80044400001234567890111112</accountId>
 </addressList>
</deleteSubscriberRequest>

Response:

<ns2:sdsResult affected="1" error="0">
</ns2:sdsResult>

4.11 Read Subscriber

4.11.1 Request
The <readSubscriberRequest> request extracts IMSI, MSISDN, and External Identifier
routing data and subscriber data. See Subscriber and Routing Data for a description of
subscriber and routing data. Each routing entity contains up to nine destination names.

If the group="y" attribute is specified, then the request extracts and displays all data
associated with the subscriber. The returned response will have the Subscriber's Account ID,
all IMSI, MSISDN, and External Identifier values, and the nine destination values from any of
the subscriber's routing entities is returned in the response. All of a subscriber's routing
entities have the same destination values, so any routing entity can be used to extract the
values.

If group="y" is not specified or if group="n" is specified, then only the specified IMSI,
MSISDN, and External Identifier routing entities are retrieved. The returned response will
have each IMSI, MSISDN, or External Identifier value along with its individual up to nine
destination values.

Chapter 4
Read Subscriber

4-43

Semantic Rules (requests that do not specify the group attribute or specify
group="n")

• The accountId parameter cannot be specified.

• At least one routing entity (IMSI, MSISDN, or External Identifier) must be specified.

• A maximum of 10 routing entities (IMSI, MSISDN, External Identifier, or
combinations of the two) can be specified.

Semantic Rules (requests that specify group="y")

• All specified accountId, imsi, msisdn, or externalIdentifier values must
be assigned to one subscriber. The specified IMSI, MSISDN, and External
Identifier values cannot exist in a standalone routing entity.

• The accountId parameter can be specified.

• A maximum of six imsi, six msisdn, ten externalIdentifier, and one
accountId values can be specified.

Request Format

The request must be inserted between the <soapenv:Body> and </
soapenv:Body> XML tags, as shown in SOAP Request Messages.

<readSubscriberRequest [group="group"]>
 <addressList>
 [
 <accountId>accountId</accountId>
]
 [
 <imsi>imsi</imsi>
 …
 <imsi>imsi</imsi>
]
 [
 <msisdn>msisdn</msisdn>
 …
 <msisdn>msisdn</msisdn>
]
 [
 <externalId>extId</externalId>
 …
 <externalId>extId</externalId>
]
 </addressList>
</readSubscriberRequest>

Chapter 4
Read Subscriber

4-44

Request Parameters

Table 4-15 <readSubscriberRequest> Parameters (SOAP)

Parameter Description Values

group (Optional) Indicates if all of the subscriber’s
data should be retrieved or just
specified IMSI, MSISDN, or
External Identifier routing
entities.

y - Read subscriber and all of its
IMSI, MSISDN, and External
Identifier routing entities.

n - Only read specified IMSI,
MSISDN, and External Identifier
routing entities (default).

accountId (Optional) A user-defined Account ID value
to read.

1 to 26 numeric digits.

imsi (Optional) An IMSI (specified in E.212
format) value to read.

10 to 15 numeric digits.

msisdn (Optional) An MSISDN (specified in E.164
format) value to read.

8 to 15 numeric digits.

externalId (Optional) An External Identifier (specified
in NAI format) value to read.

A string with 3 to 257 characters.

4.11.2 Response
The <readSubscriberResponse> message returns the result of the request to read
subscriber routing entities. Only those subscribers or routing entities that are found are
returned. The response message contains up to nine destinations (one for each destination
type, such as <ltehss>) for each routing entity or subscriber. Only provisioned destination
names are displayed. (for example, destination names= "none" are not displayed).

Some variations in the response occur, depending on whether a subscriber or routing entities
are being retrieved.

Routing entities are retrieved (group="y" is not specified or group="n" is specified):

• No <subscriber> or <accountId> tags are used.

• The destination values are listed within each IMSI, MSISDN, or External Identifier routing
entity value.

A subscriber is retrieved (group="y" was specified):

• The <subscriber> tag is used within the <resultSet> tag.

• The <accountId> tag is displayed if the subscriber has an Account ID value defined.

• The destination values are listed one time, after the last routing entity.

Response Format (group="y" is not specified)

The response is displayed between the <soapenv:Body> and </soapenv:Body> XML
tags of a SOAP response message, as shown in SOAP Response Messages.

<readSubscriberResponse>
 <result affected="affected" error="error" [description="description"]>
 </result>
 [

Chapter 4
Read Subscriber

4-45

 <resultSet>
 [
 <imsi imsi="imsi">
 [<imshss>imshss</imshss>]
 [<ltehss>ltehss</ltehss>]
 [<pcrf>pcrf</pcrf>]
 [<ocs>ocs</ocs>]
 [<ofcs>ofcs</ofcs>]
 [<aaa>aaa</aaa>]
 [<userdef1>userdef1</userdef1>]
 [<userdef2>userdef2</userdef2>]
 [<mtchss>mtchss</mtchss>]
 </imsi>
 ...
 <imsi imsi="imsi">
 [<imshss>imshss</imshss>]
 [<ltehss>ltehss</ltehss>]
 [<pcrf>pcrf</pcrf>]
 [<ocs>ocs</ocs>]
 [<ofcs>ofcs</ofcs>]
 [<aaa>aaa</aaa>]
 [<userdef1>userdef1</userdef1>]
 [<userdef2>userdef2</userdef2>]
 [<mtchss>mtchss</mtchss>]
 </imsi>
]
 [
 <msisdn msisdn="msisdn">
 [<imshss>imshss</imshss>]
 [<ltehss>ltehss</ltehss>]
 [<pcrf>pcrf</pcrf>]
 [<ocs>ocs</ocs>]
 [<ofcs>ofcs</ofcs>]
 [<aaa>aaa</aaa>]
 [<userdef1>userdef1</userdef1>]
 [<userdef2>userdef2</userdef2>]
 [<mtchss>mtchss</mtchss>]
 </msisdn>
 ...
 <msisdn msisdn="msisdn">
 [<imshss>imshss</imshss>]
 [<ltehss>ltehss</ltehss>]
 [<pcrf>pcrf</pcrf>]
 [<ocs>ocs</ocs>]
 [<ofcs>ofcs</ofcs>]
 [<aaa>aaa</aaa>]
 [<userdef1>userdef1</userdef1>]
 [<userdef2>userdef2</userdef2>]
 [<mtchss>mtchss</mtchss>]
 </msisdn>
]
 [
 <externalId externalId="extId">
 [<imshss>imshss</imshss>]
 [<ltehss>ltehss</ltehss>]

Chapter 4
Read Subscriber

4-46

 [<pcrf>pcrf</pcrf>]
 [<ocs>ocs</ocs>]
 [<ofcs>ofcs</ofcs>]
 [<aaa>aaa</aaa>]
 [<userdef1>userdef1</userdef1>]
 [<userdef2>userdef2</userdef2>]
 [<mtchss>mtchss</mtchss>]
 </externalId>
 ...
 <externalId externalId="extId">
 [<imshss>imshss</imshss>]
 [<ltehss>ltehss</ltehss>]
 [<pcrf>pcrf</pcrf>]
 [<ocs>ocs</ocs>]
 [<ofcs>ofcs</ofcs>]
 [<aaa>aaa</aaa>]
 [<userdef1>userdef1</userdef1>]
 [<userdef2>userdef2</userdef2>]
 [<mtchss>mtchss</mtchss>]
 </externalId>
]
 </resultSet>
]
</readSubscriberResponse>

Response Format (group="y" is specified)

The response is displayed between the <soapenv:Body> and </soapenv:Body> XML
tags of a SOAP response message, as shown in SOAP Response Messages.

<readSubscriberResponse>
 <result affected="affected" error="error" [description="description"]/>
 [
 <resultSet>
 <subscriber>
 [<accountId>accountId</accountId>]
 [
 [<imsi>imsi</imsi>]
 ...
 [<imsi>imsi</imsi>]
 [<msisdn>msisdn</msisdn>]
 ...
 [<msisdn>msisdn</msisdn>]
 [<externalId>extId1</externalId>]
 ...
 [<externalId>extIdn</externalId>]
 [<imshss>imshss</imshss>]
 [<ltehss>ltehss</ltehss>]
 [<pcrf>pcrf</pcrf>]
 [<ocs>ocs</ocs>]
 [<ofcs>ofcs</ofcs>]
 [<aaa>aaa</aaa>]
 [<userdef1>userdef1</userdef1>]
 [<userdef2>userdef2</userdef2>]
 [<mtchss>mtchss</mtchss>]

Chapter 4
Read Subscriber

4-47

 </subscriber>
 </resultSet>
]
</readSubscriberResponse>

Response Parameters

Table 4-16 <readSubscriberResponse> Parameters (SOAP)

Parameter Description Values

group (Optional) Indicates if all of the
subscriber’s data should be
retrieved or just specified
IMSI, MSISDN, or External
Identifier routing entities.

y - Read subscriber and all of
its IMSI, MSISDN, and
External Identifier routing
entities.

n - Only read specified
MSISDN, IMSI, and External
Identifier routing entities
(default).

error Error code that indicates
whether or not operation was
successfully executed.

0 for success, non-zero for
failure.

affected The number of routing entities
or subscribers (for group=”y”)
read.

0-12

description A textual description
associated with the response.
This field may contain more
information as to why a
request failed.

A string with 1 to 1024
characters.

resultSet Contains 1 row for each
extracted record. Each row
contains a standalone routing
entity (IMSI, MSISDN, or
External Identifier value and
its destination values) or a
subscriber (list of related IMSI,
MSISDN, External Identifier,
and Account ID values and the
destination values used by all
routing entities assigned to the
subscriber).

subscriber (Optional) Contains all of the IMSI,
MSISDN, and External
Identifier values for a specific
subscriber, an optional
Account ID, and all
destinations defined for the
subscriber.

accountId (Optional) A user-defined Account ID
value.

1 to 26 numeric digits.

imsi (Optional) An IMSI (specified in E.212
format) value.

10 to 15 numeric digits.

Chapter 4
Read Subscriber

4-48

Table 4-16 (Cont.) <readSubscriberResponse> Parameters (SOAP)

Parameter Description Values

msisdn (Optional) An MSISDN (specified in
E.164 international public
telecommunication numbering
plan format) value.

8 to 15 numeric digits.

externalId (Optional) An External Identifier
(specified in NAI format) value.

A string with 3 to 257
characters.

imshss (Optional) The name of the IMS HSS
destination.

A string with 1 to 32
characters.

ltehss (Optional) The name of the LTE HSS
destination.

A string with 1 to 32
characters.

pcrf (Optional) The name of the PCRF
destination.

A string with 1 to 32
characters.

ocs (Optional) The name of the OCS
destination.

A string with 1 to 32
characters.

ofcs (Optional) The name of the OFCS
destination.

A string with 1 to 32
characters.

aaa (Optional) The name of the AAA server
destination.

A string with 1 to 32
characters.

userdef1 (Optional) The name of the first user
defined destination.

A string with 1 to 32
characters.

userdef2 (Optional) The name of the second user
defined destination.

A string with 1 to 32
characters.

mtchss (Optional) The name of the MTC HSS
destination.

A string with 1 to 32
characters.

Error Codes

Table 4-17 lists common errors for the <readSubscriberResponse> command. See SDS
Response Message Error Codes for a complete list of error codes.

Table 4-17 <readSubscriberResponse> Error Codes (SOAP)

Error Code Description

SUCCESS The read request was successfully completed.

IMSI_NOT_FOUND IMSI does not exist.

MSISDN_NOT_FOUND MSISDN does not exist.

SUBSCIRIBER_NOT_FOUND The subscriber could not be found in the
database.

MULTIPLE_SUBSCRIBERS Specified parameters refer to multiple subscribers.

ROUTE_TYPE_MISMATCH Standalone and subscriber routes are not allowed
in same command.

NO_ROUTES_SPECIFIED At least one IMSI, MSISDN, or External Identifier
must be specified.

DOMAIN_IDENTIFIER_NOT_FOUND Domain Identifier does not exist.

EXTERNAL_IDENTIFIER_NOT_FOUND External Identifier does not exist.

Chapter 4
Read Subscriber

4-49

4.11.3 Examples
These examples show the SDS provisioning request and response contents that are
stored within the <soapenv:Body> or <SOAP-ENV:Body> tags. See Start Transaction
Examples for an example of the whole SOAP request/response text.

The format of the response differs depending on whether the group="y" attribute is
specified.

If group="y" is not specified, then each routing entity that was found is displayed
with its destination values.

If group="y" is specified, then the result response includes an optional Account ID
value, all IMSI, MSISDN, and External Identifier values for that subscriber, and one set
of destination values (all routing entities within a subscriber have the same destination
values).

Read Routing Entities (not subscribers)

This example reads IMSI and MSISDN routing entities and displays their destination
values. It does not matter if any of the routing entities are assigned to a subscriber
because the same result will occur.

Request:

<readSubscriberRequest>
 <addressList>
 <imsi>111111111100001</imsi>
 <imsi>111111111100002</imsi>
 <msisdn>8004605500</msisdn>
 </addressList>
</readSubscriberRequest>

Response:

<ns3:readSubscriberResponse>
 <result affected="3" error="0"></result>
 <resultSet>
 <imsi imsi="111111111100001">
 <ltehss>LTE_HSS_4</ltehss>
 <aaa>AAA_4</aaa>
 </imsi>
 <imsi imsi="111111111100002">
 <ltehss>LTE_HSS_4</ltehss>
 <aaa>AAA_4</aaa>
 </imsi>
 <msisdn msisdn="8004605500">
 <ltehss>LTE_HSS_4</ltehss>
 <aaa>AAA_4</aaa>
 </msisdn>
 </resultSet>
</ns3:readSubscriberResponse>

Chapter 4
Read Subscriber

4-50

Read Routing Entities with Not Found IMSI/MSISDN Values

This example reads IMSI and MSISDN routing entities and displays their destination values.
In this example, one IMSI and one MSISDN value do not exist, so the response returns the
two values that do exist. The same result will occur if any of the routing entities are assigned
to a subscriber.

Request:

<readSubscriberRequest>
 <addressList>
 <imsi>777777777777777</imsi>
 <imsi>111111111100002</imsi>
 <msisdn>8004605500</msisdn>
 <msisdn>88888888888888</msisdn>
 </addressList>
</readSubscriberRequest>

Response:

<ns3:readSubscriberResponse>
 <result affected="2" error="0"></result>
 <resultSet>
 <imsi imsi="111111111100002">
 <ltehss>LTE_HSS_4</ltehss>
 <aaa>AAA_4</aaa>
 </imsi>
 <msisdn msisdn="8004605500">
 <ltehss>LTE_HSS_4</ltehss>
 <aaa>AAA_4</aaa>
 </msisdn>
 </resultSet>
</ns3:readSubscriberResponse>

Read Subscriber (Success)

This example reads a subscriber and displays all of the subscriber data. Any of the
subscriber Account ID, IMSI, or MSISDN values can be specified. In this example, the
MSISDN value is specified.

Request:

<readSubscriberRequest group=”y”>
 <addressList>
 <msisdn>8004605500</msisdn>
 </addressList>
</readSubscriberRequest>

Response:

<ns3:readSubscriberResponse>
 <result affected="1" error="0"></result>
 <resultSet>

Chapter 4
Read Subscriber

4-51

 <subscriber>
 <accountId>80044400001234567890111112</accountId>
 <imsi>111111111100001</imsi>
 <imsi>111111111100002"</imsi>
 <msisdn>8004605500</msisdn>
 <ltehss>LTE_HSS_4</ltehss>
 <aaa>AAA_4</aaa>
 </subscriber>
 </resultSet>
</ns3:readSubscriberResponse>

Read Subscriber Fails for Standalone Routing Entity

This example attempts to read a subscriber. The request fails because the specified
MSISDN value is for a standalone routing entity.

Request:

<readSubscriberRequest group=”y”>
 <addressList>
 <msisdn>9198675309</msisdn>
 </addressList>
</readSubscriber>

Response:

<ns3:readSubscriberResponse>
 <result description=”subscriber not found” affected="0"
error="2022"></result>
</ns3:readSubscriberResponse>

4.12 Update Subscriber NAI

4.12.1 Request
The <updateSubscriberNaiRequest> provisions NAI routing entities. Each NAI
value is defined as a combination of an NAI host and NAI user value. For example,
John.Smith@oracle.com would have John.Smith as the NAI user value and
oracle.com as the NAI host value.

Each routing entity contains up to nine destination names. Each destination contains
FQDN and realm values, which are used for routing messages. The request can
remove a destination value from existing NAI routing entities by specifying none as the
destination name.

The request can add new routing entities or update destination names in existing
routing entities. These destination changes are applied to all specified NAI routing
entities.

Semantic Rules

• The host name must already exist in the database.

• Between 1 and 10 user names must be specified.

Chapter 4
Update Subscriber NAI

4-52

• At least one destination must be specified.

• All specified destination names must already exist in the database.

• Each destination name type can only be specified once.

• Specifying a destination name of "none" removes the association of that destination
from the specified routing entity.

• All specified routing entities will be provisioned with the same destination value(s).

Request Format

The request must be inserted between the <soapenv:Body> and </soapenv:Body> XML
tags, as shown in SOAP Request Messages.

<updateSubscriberNaiRequest [timeout="timeout"]>
 <naiList>
 <host>host</host>
 <user>user</user>
[
 <user>user</user>
 …
 <user>user</user>
]
 </naiList>
 <destinationList>
[<imshss>imshss</imshss>]
[<ltehss>ltehss</ltehss>]
[<pcrf>pcrf</pcrf>]
[<ocs>ocs</ocs>]
[<ofcs>ofcs</ofcs>]
[<aaa>aaa</aaa>]
[<userdef1>userdef1</userdef1>]
[<userdef2>userdef2</userdef2>]
[<mtchss>mtchss</mtchss>]
 <destinationList>
</updateSubscriberNaiRequest>

Chapter 4
Update Subscriber NAI

4-53

Request Parameters

Table 4-18 <updateSubscriberNaiRequest> Parameters (SOAP)

Parameter Description Values

timeout (Optional) The amount of time (in
seconds) to wait before being
able to perform a write if
another connection is
performing a write, or has a
transaction open. Clients
waiting to write will be
processed in the order that
their requests were received.

If the request is being
performed within a transaction,
this parameter will have no
effect, as the client already
has a transaction open.

0 (return immediately if not
available) to 3600 seconds
(default is 0).

host The host name, which is used
with all user values.

A string with 1 to 64
characters.

user The NAI user name to be
associated with the host to
form an NAI.

A string with 1 to 64
characters.

Must have 1-10 user values.

imshss (Optional) The name of the IMS HSS
destination.

A string with 1 to 32
characters.

ltehss (Optional) The name of the LTE HSS
destination.

A string with 1 to 32
characters.

pcrf (Optional) The name of the PCRF
destination.

A string with 1 to 32
characters.

ocs (Optional) The name of the OCS
destination.

A string with 1 to 32
characters.

ofcs (Optional) The name of the OFCS
destination.

A string with 1 to 32
characters.

aaa (Optional) The name of the AAA server
destination.

A string with 1 to 32
characters.

userdef1 (Optional) The name of the first user
defined destination.

A string with 1 to 32
characters.

userdef2 (Optional) The name of the second user
defined destination.

A string with 1 to 32
characters.

4.12.2 Response
The update subscriber NAI response is returned as a generic <ns2:sdsResult>
response. This response returns the result of the request to provision NAI subscriber
routing entities. A single result applies to all routing entities supplied. Either all routing
entities were successfully updated, or no updates were made.

Chapter 4
Update Subscriber NAI

4-54

Note:

If applying all of the provisioning changes results in no database records being
modified (because the database already contained the updated values), the
NO_UPDATES error code is returned and the number of affected records is 0.

Response Format

The response is displayed between the <soapenv:Body> and </soapenv:Body> XML
tags, as shown in SOAP Response Messages.

<ns2:sdsResult affected="affected" error="error" [description="description"]>
</ns2:sdsResult>

Response Parameters

The parameters for all of the SOAP response commands are shown in SOAP Response
Messages.

Response Error Codes

Table 4-19 lists common error codes for the <updateSubscriberNaiResponse>
command. See SDS Response Message Error Codes for a complete list of error codes.

Table 4-19 <updateSubscriberNaiResponse> Error Codes (SOAP)

Error Code Description

SUCCESS The update request was successfully completed.

NO_UPDATES The request does not have updates to the
database.

NAI_HOST_NOT_FOUND Host name does not exist.

DEST_NOT_FOUND Destination name does not exist.

DEST_TYPE_MISMATCH Destination has a different destination type than
the desired destination type.

4.12.3 Examples
Some of the following examples are based upon previous requests. The order of the requests
can be important.

These examples show the SDS provisioning request and response contents that are stored
within the <soapenv:Body> or <SOAP-ENV:Body> tags. See Start Transaction Examples for an
example of the whole SOAP request/response text.

Add New NAI Routing Entities

This example creates three new NAI routing entities and sets their destination values to the
specified values. This example assumes that the host and destination values already exist.

The result of this request is:

• New NAI routing entities are created.

Chapter 4
Update Subscriber NAI

4-55

• All destination values for each routing entity are set to specified values.

Request:

<updateSubscriberNaiRequest timeout="10">
 <naiList>
 <host>oracle.com</host>
 <user>John.Smith</user>
 <user>Jane.Doe</user>
 <user>Mike.Jones</user>
 </naiList>
 <destinationList>
 <imshss>IMS_HSS_1</imshss>
 <ltehss>LTE_HSS_1</ltehss>
 <aaa>AAA_Texas</aaa>
 </destinationList>
</updateSubscriberNaiRequest>

Response:

<ns2:sdsResult affected="3" error="0">
</ns2:sdsResult>

Update NAI Routing Entities Destinations (Success)

This example updates existing NAI routing entities with new destination values.

Note:

This request does not update all NAI values that were specified in the
previous request.

The result of this request is that the specified NAI routing entities are updated with
specified values.

Request:

<updateSubscriberNaiRequest timeout="10">
 <naiList>
 <host>oracle.com</host>
 <user>Jane.Doe</user>
 <user>Mike.Jones</user>
 </naiList>
 <destinationList>
 <ltehss>LTE_HSS_4</ltehss>
 <pcrf>PCRF_Ohio</pcrf>
 </destinationList>
</updateSubscriberNaiRequest>

Chapter 4
Update Subscriber NAI

4-56

Response:

<ns2:sdsResult affected="2" error="0">
</ns2:sdsResult>

Update NAI Routing Entities Destinations (Failure)

This example fails to update existing NAI routing entities with new destination values because
the destination does not exist.

No changes are made to the database because the request failed.

Request:

<updateSubscriberNaiRequest timeout="10">
 <naiList>
 <host>oracle.com</host>
 <user>Jane.Doe</user>
 </naiList>
 <destinationList>
 <ltehss>junk</ltehss>
 </destinationList>
</updateSubscriberNaiRequest>

Response:

<ns2:sdsResult description=“destination not found”
 affected="0" error="2006">
</ns2:sdsResult>

4.13 Delete Subscriber NAI

4.13.1 Request
The <deleteSubscriberNaiRequest> message deletes NAI routing entities. Each NAI
value is defined as a combination of a NAI host and NAI user value. For example,
"John.Smith@oracle.com" would have "John.Smith" as the NAI user value and "oracle.com"
as the NAI host value. The <deleteSubscriberNaiRequest> removes the NAI user
value, but does not affect the NAI host value.

Semantic Rules

• The host name must already exist in the database.

• Between 1 and 10 user names must be specified.

Request Format

The request must be inserted between the <soapenv:Body> and </soapenv:Body> XML
tags of a SOAP request message, as shown in SOAP Request Messages.

<deleteSubscriberNaiRequest [timeout="timeout"]>
 <naiList>

Chapter 4
Delete Subscriber NAI

4-57

 <host>host</host>
 <user>user</user>
 [
 <user>user</user>
 …
 <user>user</user>
]
 </naiList>
</deleteSubscriberNaiRequest>

Request Parameters

Table 4-20 <deleteSubscriberNaiRequest> Parameters (SOAP)

Parameter Description Values

timeout (Optional) The amount of time (in
seconds) to wait before being
able to perform a write if
another connection is
performing a write, or has a
transaction open. Clients
waiting to write will be
processed in the order that
their requests were received.

If the request is being
performed within a transaction,
this parameter will have no
effect, as the client already
has a transaction open.

0 (return immediately if not
available) to 3600 seconds
(default is 0).

host The host name, which is used
with all user values.

A string with 1 to 64
characters.

user The NAI user name to be
associated with the host to
form an NAI.

A string with 1 to 64
characters.
Must have 1-10 user values.

4.13.2 Response
The delete subscriber NAI response is returned as a generic <ns2:sdsResult>
response. This response returns the result of the request to delete NAI subscriber
routing entities. A single result applies to all routing entities supplied. The response
returns the number actually deleted. Any that do not exist are not included in the
count. However, if any actual delete fails, then the whole command fails and no
changes are made.

Note:

If applying all of the delete requests results in no database records being
deleted (because they already did not exist in the database), the
NO_UPDATES error code is returned and the number of affected records is
0.

Chapter 4
Delete Subscriber NAI

4-58

Response Output

The response is displayed between the <soapenv:Body> and </soapenv:Body> XML
tags of a SOAP response message, as shown in SOAP Response Messages.

<ns2:sdsResult affected="affected" error="error" [description="description"]>
</ns2:sdsResult>

Response Parameters

The parameters for all of the SOAP response commands are shown in SOAP Response
Messages.

Error Codes

Table 4-21 lists the common error codes for the SOAP
<deleteSubscriberNaiResponse> message. See SDS Response Message Error Codes
for a complete list of error codes.

Table 4-21 <deleteSubscriberNaiResponse> Error Codes (SOAP)

Error Code Description

SUCCESS The delete request was successfully completed.

NO_UPDATES The record does not exist in the database.

NAI_HOST_NOT_FOUND The Host name does not exist.

4.13.3 Examples
These examples show the SDS provisioning request and response contents that are stored
within the <soapenv:Body> or <SOAP-ENV:Body> tags. See Start Transaction Examples for an
example of the whole SOAP request/response text.

Delete NAI Routing Entities

This example successfully deletes three NAI routing entities.

Request:

<deleteSubscriberNaiRequest timeout="10">
 <naiList>
 <host>oracle.com</host>
 <user>John.Smith</user>
 <user>Jane.Doe</user>
 <user>Mike.Jones</user>
 </naiList>
</deleteSubscriberNaiRequest>

Response:

<ns2:sdsResult affected="3" error="0">
</ns2:sdsResult>

Chapter 4
Delete Subscriber NAI

4-59

Delete Several NAI Routing Entities

This example successfully deletes two NAI routing entities. Other NAI values were not
found and were not deleted.

Request:

<deleteSubscriberNaiRequest timeout="10">
 <naiList>
 <host>oracle.com</host>
 <user>John.Smith</user>
 <user>Ann.Jones</user>
 <user>Jane.Doe</user>
 <user>Mike.Jackson</user>
 </naiList>
</deleteSubscriberNaiRequest>

Response:

<ns2:sdsResult affected="2" error="0">
</ns2:sdsResult>

Delete NAI Routing Entities (failure)

This example fails because no NAI subscribers are found.

Request:

<deleteSubscriberNaiRequest>
 <naiList>
 <host>junk.com</host>
 <user>John.Smith</user>
 <user>Jane.Doe</user>
 </naiList>
</deleteSubscriberNaiRequest>

Response:

<ns3:deleteSubscriberNaiResponse>
 <result description=”host not found” affected="0" error="2010">
 </result>
</ns3:deleteSubscriberNaiResponse>

4.14 Read Subscriber NAI

4.14.1 Request
The <readSubscriberNaiRequest> message extracts (reads) NAI routing entities
and displays the 1-9 destination values for each routing entity.

Chapter 4
Read Subscriber NAI

4-60

Semantic Rules

• The host name must already exist in the database.

• Between 1 and 10 user names must be specified.

Request Format

The request must be inserted between the <soapenv:Body> and </soapenv:Body> XML
tags of a SOAP request message, as shown in SOAP Request Messages.

<readSubscriberNaiRequest [timeout="timeout"]>
 <naiList>
 <host>host</host>
 <user>user</user>
 [
 <user>user</user>
 …
 <user>user</user>
]
 </naiList>
</readSubscriberNaiRequest>

Request Parameters

Table 4-22 <readSubscriberNaiRequest> Parameters (SOAP)

Parameters Description Values

timeout (Optional) The amount of time (in seconds)
to wait before being able to
perform a write if another
connection is performing a write,
or has a transaction open.
Clients waiting to write will be
processed in the order that their
requests were received.
If the request is being performed
within a transaction, this
parameter will have no effect, as
the client already has a
transaction open.

0 (return immediately if not
available) to 3600 seconds
(default is 0).

host The host name, which is used
with all user values.

A string with 1 to 64 characters.

user The NAI user name to be
associated with the host to form
an NAI.

A string with 1 to 64 characters.
Must have 1-10 user values.

4.14.2 Response
The <readSubscriberNaiResponse> response returns the result of the request to read
NAI subscriber routing entities. Only those NAI subscriber routing entities that are found are
returned. The response message contains up to nine destinations (one for each destination
type, such as <ltehss>) for each routing entity. Only provisioned destination names are
displayed. (for example, destination names= "none" are not displayed).

Chapter 4
Read Subscriber NAI

4-61

Response Format

The response is displayed between the <soapenv:Body> and </soapenv:Body>
XML tags of a SOAP response message, as shown in SOAP Response Messages.

<ns3:readSubscriberNaiResponse>
 <result affected="affected" error="error"
[description="description"]>
 </result>
 [
 <resultSet>
 <user="user" nai host="host">
 [<imshss>imshss</imshss>]
 [<ltehss>ltehss</ltehss>]
 [<pcrf>pcrf</pcrf>]
 [<ocs>ocs</ocs>]
 [<ofcs>ofcs</ofcs>]
 [<aaa>aaa</aaa>]
 [<userdef1>userdef1</userdef1>]
 [<userdef2>userdef2</userdef2>]
 [<mtchss>mtchss</mtchss>]
 </nai>
 [
 ...
 <user="user" nai host="host">
 [<imshss>imshss</imshss>]
 [<ltehss>ltehss</ltehss>]
 [<pcrf>pcrf</pcrf>]
 [<ocs>ocs</ocs>]
 [<ofcs>ofcs</ofcs>]
 [<aaa>aaa</aaa>]
 [<userdef1>userdef1</userdef1>]
 [<userdef2>userdef2</userdef2>]
 [<mtchss>mtchss</mtchss>]
 </nai>
]
 </resultSet>
]
</ns3:readSubscriberNaiResponse>

Response Parameters

Table 4-23 <readSubscriberNaiResponse> Parameters (SOAP)

Parameter Description Values

error Error code that indicates
whether or not operation was
successfully executed.

0 for success, non-zero for
failure.

affected The number of routing entities
read.

0-10

Chapter 4
Read Subscriber NAI

4-62

Table 4-23 (Cont.) <readSubscriberNaiResponse> Parameters (SOAP)

Parameter Description Values

description (Optional) A textual description
associated with the response.
This field may contain more
information as to why a
request failed or a description
of the changes if the request
succeeded.

A string with 1 to 1024
characters.

<resultSet> SOAP tag
(optional)

Indicates rows of data are
returned. If no records are
being returned, this tag is not
present.

A string with 1 to 1024
characters.

host The host name, which is used
with all user values.

A string with 1 to 64
characters.

user The NAI user name to be
associated with the host to
form an NAI.

A string with 1 to 64
characters.
Must have 1-10 user values.

imshss (Optional) The name of the IMS HSS
destination.

A string with 1 to 32
characters.

ltehss (Optional) The name of the LTE HSS
destination.

A string with 1 to 32
characters.

pcrf (Optional) The name of the PCRF
destination.

A string with 1 to 32
characters.

ocs (Optional) The name of the OCS
destination.

A string with 1 to 32
characters.

ofcs (Optional) The name of the OFCS
destination.

A string with 1 to 32
characters.

aaa (Optional) The name of the AAA server
destination.

A string with 1 to 32
characters.

userdef1 (Optional) The name of the first user
defined destination.

A string with 1 to 32
characters.

userdef2 (Optionnal) The name of the second user
defined destination.

A string with 1 to 32
characters.

Error Codes

Table 4-24 lists the common error codes for the <readSubscriberNaiResponse>
command. See SDS Response Message Error Codes for a complete list of error codes.

Table 4-24 <readSubscriberNaiResponse> Error Codes (SOAP)

Error Code Description

SUCCESS The read request was successfully completed.

NAI_HOST_NOT_FOUND Host name does not exist.

NAI__NOT_FOUND None of the specified NAIs exist.

Chapter 4
Read Subscriber NAI

4-63

4.14.3 Examples
These examples show the SDS provisioning request and response contents that are
stored within the <soapenv:Body> or <SOAP-ENV:Body> tags. See Start Transaction
Examples for an example of the whole SOAP request/response text.

Read NAI Routing Entities

This example successfully reads three NAI routing entities.

Request:

<readSubscriberNaiRequest>
 <naiList>
 <host>oracle.com</host>
 <user>John.Smith</user>
 <user>Jane.Doe</user>
 <user>Mike.Jones</user>
 </naiList>
</readSubscriberNaiRequest>

Response:

<ns3:readSubscriberNaiResponse>
 <result affected="3" error="0">
 </result>
 <resultSet>
 <nai host=”oracle.com” user=”John.Smith”>
 <imshss>IMS_HSS_1</imshss>
 <ltehss>LTE_HSS_1</ltehss>
 <aaa>AAA_Texas</aaa>
 </nai>
 <nai host=”oracle.com” user=”Jane.Doe”>
 <imshss>IMS_HSS_1</imshss>
 <ltehss>LTE_HSS_4</ltehss>
 <pcrf>PCRF_Ohio</pcrf>
 <aaa>AAA_Texas</aaa>
 </nai>
 <nai host=”oracle.com” user=”Mike.Jones”>
 <imshss>IMS_HSS_1</imshss>
 <ltehss>LTE_HSS_4</ltehss>
 <pcrf>PCRF_Ohio</pcrf>
 <aaa>AAA_Texas</aaa>
 </nai>
 </resultSet>
</ns3:readSubscriberNaiResponse>

Read NAI Routing Entities

This example successfully reads two NAI routing entities. Other NAI values are not
found.

Chapter 4
Read Subscriber NAI

4-64

Request:

<readSubscriberNaiRequest>
 <naiList>
 <host>oracle.com</host>
 <user>John.Smith</user>
 <user>Ann.Jones</user>
 <user>Jane.Doe</user>
 <user>Mike.Jackson</user>
 </naiList>
</readSubscriberNaiRequest>

Response:

<ns3:readSubscriberNaiResponse>
 <result affected="2" error="0">
 </result>
 <resultSet>
 <nai host=”oracle.com” user=”John.Smith”>
 <imshss>IMS_HSS_1</imshss>
 <ltehss>LTE_HSS_1</ltehss>
 <aaa>AAA_Texas</aaa>
 </nai>
 <nai host=”oracle.com” user=”Jane.Doe”>
 <imshss>IMS_HSS_1</imshss>
 <ltehss>LTE_HSS_4</ltehss>
 <pcrf>PCRF_OHIO</pcrf>
 <aaa>AAA_Texas</aaa>
 </nai>
 </resultSet>
</ns3:readSubscriberNaiResponse>

Read NAI Routing Entities (Failure)

This example fails because no NAI subscribers are found.

Request:

<readSubscriberNaiRequest>
 <naiList>
 <host>oracle.com</host>
 <user>Kevin.Smith</user>
 <user>John.Doe</user>
 </naiList>
</readSubscriberNaiRequest>

Response:

<ns3:readSubscriberNaiResponse>
 <result description=”nai not found” affected="0" error="2009">
 </result>
</ns3:readSubscriberNaiResponse>

Chapter 4
Read Subscriber NAI

4-65

4.15 Message Flow Example Sessions
The following sections contain example usages of the exchanging messages between
the Customer Provisioning System (CPS) and the XDS process on the Active SDS
server on the Primary Provisioning Site. All scenarios assume that a TCP/IP
connection has already been established between the client and SDS.

The examples only show the text that is between the <soapenv:Body> and </
soapenv:Body> XML tags of a SOAP request message.

The first column in the tables is the direction that the message is going. The strings
displayed in the Message column are the actual ASCII text that is between the
<soapenv:Body> and </soapenv:Body> XML tags of a SOAP request that would flow
over the connection.

The actual request and response messages are just a series of characters with no
extra spaces or new line characters. New lines and extra spaces were added to the
examples for readability purposes.

4.15.1 Single Command Transaction
This example shows three request/response pairs that are exchanged between the
CPS and SDS. These requests are processed as single command transactions, which
means that each request is immediately committed to the database. This example
creates IMSI and MSISDN routing entities.

Chapter 4
Message Flow Example Sessions

4-66

Table 4-25 Single Command Transaction Message Flow Example (SOAP)

Message Description

CPS—>SDS
<updateSubscriberRequest
>
<addressList>
<imsi>310910421000106</
imsi>
<imsi>310910421000307</
imsi>
<imsi>310910421000309</
imsi>
<msisdn>15634210106</
msisdn>
<msisdn>15634210107</
msisdn>
</addressList>
<destinationList>
<ltehss>LTE_HSS_2</
ltehss>
<aaa>AAA_4</aaa>
</destinationList>
</
updateSubscriberRequest>

Request to create 5 stand-alone
routing entities - 3 IMSIs and 2
MSISDNs with an LTE HSS and
AAA server destinations.

Note: Request is made to
include the original request in the
response.

Response to create stand-alone
routing entities - success.
Affected rows = 5 (as 5 new
entries created for 3 IMSIs and 2
MSISDNs).

CPS<—SDS
<ns2:sdsResult
affected="5" error="0">
</ns2:sdsResult>

CPS—>SDS
<updateSubscriberRequest
>
<addressList>
<imsi>310910421000106</
imsi>
<msisdn>15634210106</
msisdn>
</addressList>
<destinationList>
<ltehss>LTE_HSS_5</
ltehss>
</destinationList>
</
updateSubscriberRequest>

Request to update existing IMSI
and MSISDN subscriber routing
entities with a new LTE HSS
value.

Response to update subscriber
routing entities - success.
Affected rows = 2 (2 entries for
an IMSI and MSISDN were
updated with new LTE HSS
value).

Chapter 4
Message Flow Example Sessions

4-67

Table 4-25 (Cont.) Single Command Transaction Message Flow Example (SOAP)

Message Description

CPS<—SDS
<ns2:sdsResult
affected="2" error="0">
</ns2:sdsResult>

CPS—>SDS
<updateSubscriberRequest
>
<addressList>
<imsi>310910421000102</
imsi>
</addressList>
<destinationList>
<ltehss>BAD_VALUE</
ltehss>
</destinationList>
</
updateSubscriberRequest>

Request to create a stand-alone
routing entitiy with an invalid LTE
HSS destination value.

Request fails, as the destination
does not exist.

CPS<—SDS
<ns2:sdsResult
description=“destination
 not found”
affected="0"
error="2006"></
ns2:sdsResult>

4.15.2 Multiple Commands Transaction Committed
This example issues several requests within one transaction which is then committed
successfully.

Table 4-26 Multiple Commands Transaction Committed Message Flow Example
(SOAP)

Message Description

CPS—>SDS
<startTransactionReque
st>0</
startTransactionReques
t>

Request to start a transaction
immediately.

Response to start transaction -
success.

Chapter 4
Message Flow Example Sessions

4-68

Table 4-26 (Cont.) Multiple Commands Transaction Committed Message Flow
Example (SOAP)

Message Description

CPS<—SDS
<ns2:sdsResult
affected="0"
error="0">
</ns2:sdsResult>

CPS—>SDS
<updateSubscriberReque
st
 <addressList>

<imsi>310910421000444<
/imsi>

<msisdn>15634210444</
msisdn>
 </addressList>
 <destinationList>

<ltehss>LTE_HSS_1</
ltehss>
 </destinationList>
</
updateSubscriberReques
t>

Request to add new
standalone IMSI and MSISDN
- success.

CPS<—SDS
<ns2:sdsResult
affected="2"
error="0"/>
</ns2:sdsResult>

Chapter 4
Message Flow Example Sessions

4-69

Table 4-26 (Cont.) Multiple Commands Transaction Committed Message Flow
Example (SOAP)

Message Description

CPS—>SDS
<updateSubscriberReque
st>
 <addressList>

<imsi>310910421000555<
/imsi>

<msisdn>15634210555</
msisdn>
 </addressList>
 <destinationList>

<ltehss>LTE_HSS_2</
ltehss>
 </destinationList>
</
updateSubscriberReques
t>

Request to update existing
standalone IMSI and MSISDN
- success.

CPS<—SDS
<ns2:sdsResult
affected="2"
error="0"/>
</ns2:sdsResult>

CPS—>SDS
<updateSubscriberNaiRe
quest>
 <naiList>

<host>operator.com</
host>

<user>roger.brown</
user>
 </naiList>
 <destinationList>

<ltehss>LTE_HSS_1</
ltehss>
 </destinationList>
</
updateSubscriberNaiReq
uest>

Request to update an NAI -
success.

Chapter 4
Message Flow Example Sessions

4-70

Table 4-26 (Cont.) Multiple Commands Transaction Committed Message Flow
Example (SOAP)

Message Description

CPS<—SDS
<ns2:sdsResult
affected="1"
error="0">
</ns2:sdsResult>

CPS—>SDS
<commitRequest> </
commitRequest>

Request to commit the
transaction.

Response to commit
transaction - success. All
updates were successfully
performed.CPS<—SDS

<ns2:sdsResult
affected="0"
error="0">
</ns2:sdsResult>

4.15.3 Multiple Commands Transaction Rolled Back
This example issues several requests within one transaction which is rolled back.

Table 4-27 Multiple Commands Transaction Rolled Back Message Flow Example
(SOAP)

Message Description

CPS—>SDS
<startTransactionRequest
>10</
startTransactionRequest>

Request to start a transaction
within 10 seconds.

Response to start transaction -
success.

CPS<—SDS
<ns2:sdsResult
affected="0" error="0">
</ns2:sdsResult>

Chapter 4
Message Flow Example Sessions

4-71

Table 4-27 (Cont.) Multiple Commands Transaction Rolled Back Message Flow
Example (SOAP)

Message Description

CPS—>SDS
<updateSubscriberRequest
>
<addressList>
<imsi>310910421000777</
imsi>
<msisdn>15634210777</
msisdn>
</addressList>
<destinationList>
<ltehss>LTE_HSS_7</
ltehss>
</destinationList>
</
updateSubscriberRequest>

Request to update existing
stand-alone IMSI and MSISDN -
success.

CPS<—SDS
<ns2:sdsResult
affected="2" error="0"/>
</ns2:sdsResult>

CPS—>SDS
<updateSubscriberNaiRequ
est>
<naiList>
<host>operator.com</
host>
<user>david.leno</user>
</naiList>
<destinationList>
<ltehss>LTE_HSS_1</
ltehss>
</destinationList>
</
updateSubscriberNaiReque
st>

Request to create an NAI -
success.

CPS<—SDS
<ns2:sdsResult
affected="1" error="0">
</ns2:sdsResult>

CPS—>SDS
<rollbackRequest></
rollback>

Transaction is rolled back by the
client. None of the previous IMSI,
MSISDN or NAI entities will be
created.

Chapter 4
Message Flow Example Sessions

4-72

Table 4-27 (Cont.) Multiple Commands Transaction Rolled Back Message Flow
Example (SOAP)

Message Description

CPS<—SDS
<ns2:sdsResult
affected="0" error="0">
</ns2:sdsResult>

Rollback is successful; no
creations/updates are made. The
client could have sent a commit
instead of the rollback, which
would have resulted in the 2
IMSIs, 2 MSISDNs, and 1 NAI
being created.

Chapter 4
Message Flow Example Sessions

4-73

5
XML Message Definitions

This chapter describes XML requests and responses syntax and parameters.

5.1 Message Conventions
Message specification syntax follows several conventions to convey what parameters are
required or optional and how they and their values must be specified.

Table 5-1 Message Conventions

Symbol Description

monospace with background
All code examples.

monospace Names of commands when provided outside of a
code example.

italics Variable names when provided outside of a code
example or value list.

spaces Spaces (for example, zero or more space
characters, " ") may be inserted anywhere except
within a single name or number. At least one
space is required to separate adjacent names or
numbers.

… Ellipses represent a variable number of repeated
entries. For example:

dn DN1 , dn DN2, …, dn DN7, dn DN8

5-1

Table 5-1 (Cont.) Message Conventions

Symbol Description

< > Angle brackets are used to enclose parameter
values that are choices or names.
In the following example, the numbers represent
specific value choices.

parameter1 <1|2|3>

In the following example, ServerName
represents the actual value.

parameter2 <ServerName>

In the following example, the numbers represent a
choice in the range from 0 to 3600.

parameter3 <0..3600>

[] Square brackets are used to enclose an optional
parameter and its value.

[, parameter1 < 1|2|3 >]

A parameter and its value that are not enclosed in
square brackets are mandatory.

| The pipe symbol is used in a parameter value list
to indicate a choice between available values.

Parameter1 <1|2|3>

, A literal comma is used in the message to
separate each parameter that is specified.

5.2 XML-based Interface
The XML Data server uses an XML based protocol, in which a client communicates
with the XML Data server by issuing request message strings over an underlying
TCP/IP network connection. A session consists of a series of XML commands,
initiated by the client, and responses from the XML Data server.

Every XML request/response consists of a 4-byte binary length value, followed by the
indicated number of ASCII characters that form the XML request. There is no need to
terminate the XML request with any terminating character(s).

The length value is a 4 byte integer in network byte order indicating the size in bytes of
the XML part.

Chapter 5
XML-based Interface

5-2

Note:

“Network byte order” refers to the standard byte order defined in the IP protocol. It
corresponds to big-endian (most significant first). It is a zero-padded 4 byte value.

The following data-stream Hex dump provides an example of an update subscriber request
sent from an XML Data server client to the XML Data server.

00000000 00 00 00 8d 3c 75 70 64 61 74 65 53 75 62 73 63 <updateSubsc
00000010 72 69 62 65 72 20 65 6e 74 3d 22 73 75 62 73 63 riber ent="subsc
00000020 72 69 62 65 72 52 6f 75 74 69 6e 67 22 20 6e 73 riberRouting" ns
00000030 3d 22 64 73 72 22 3e 3c 69 6d 73 69 3e 33 31 30 ="dsr"><imsi>310
00000040 39 31 30 34 32 31 30 30 30 30 31 30 33 3c 2f 69 9104210000103</i
00000050 6d 73 69 3e 3c 6c 74 65 68 73 73 3e 4c 54 45 5f msi><ltehss>LTE_
00000060 48 53 53 5f 32 3c 2f 6c 74 65 68 73 73 3e 3c 61 HSS_2</ltehss><a
00000070 61 61 3e 41 41 41 5f 34 3c 2f 61 61 61 3e 3c 2f aa>AAA_4</aaa></
00000080 75 70 64 61 74 65 53 75 62 73 63 72 69 62 65 72
updateSubscriber00000090 3e

Like the XML request message, an XML response message consists of a 4 byte binary length
value, followed by the indicated number of ASCII characters that form the XML response.
There is no terminator to the XML response.

The following data-stream Hex dump provides an example of an update subscriber response
message string sent from an XML Data server client to the XML Data server client.

00000000 00 00 00 4a 3c 75 70 64 61 74 65 53 75 62 73 63 <updateSubsc
00000010 72 69 62 65 72 52 65 73 70 3e 3c 72 65 73 20 65 riberResp><res e
00000020 72 72 6f 72 3d 22 30 22 20 61 66 66 65 63 74 65 rror="0" affecte
00000030 64 3d 22 31 22 2f 3e 3c 2f 75 70 64 61 74 65 53 d="1"/></updateS
00000040 75 62 73 63 72 69 62 65 72 52 65 73 70 3e ubscriberResp>

5.3 Transaction ID
Each message can have a Transaction ID called the id as an attribute. The id attribute is
used by the XML Data server client to correlate request and response messages. The id
attribute is optional and if specified, is an integer between 1 and 4294967295, expressed as a
decimal number in ASCII. If the id attribute is specified in a request, the same id attribute
and value are returned by the XML Data server in the corresponding response. A unique id
value must be used in each request message to differentiate responses.

5.4 XML Response Messages
An XML response message is sent by the SDS XML provisioning client in response to an
XML request.

Each response message consists of a 4-byte binary length value, followed by the XML
response in ASCII characters. The length value contains the number of bytes in the XML
response, excluding the 4-bytes for the length.

The original XML request is included in the response only if indicated in the initiating request.

Chapter 5
Transaction ID

5-3

A rowset, contained between the <rset> tags, is only present if data is to be returned,
such as in the <readSubscriber> and <readSubscriberNai> requests.

A generic response type can be generated if the XML request cannot be parsed, the
request is not valid, and in some other cases. The response name of a generic
response type is errorResp. The id field, if supplied in the original request, may be
included if was possible to extract it, but this cannot be guaranteed, depending on the
error condition.

Response Message Format (<readSubscriberResp> and
<readSubscriberNaiResp> messages)

lengthInBytes
<respName [id="id"]>
[
 originalXMLRequest
]
 <res error="error" affected="affected"
[description="description"]/>
[
 <rset>
 <rowName [[rowAttributeName]="rowAttributeValue"] …
 [rowAttributeName]="rowAttributeValue"]]>
 <rowValueName>rowValue</rowValueName>
 ...
 <rowValueName>rowValue</rowValueName>
 </rowName>
 ...
 <rowName [[rowAttributeName]="rowAttributeValue"] …
 [rowAttributeName]="rowAttributeValue"]]>
 <rowValueName>rowValue</rowValueName>
 ...
 <rowValueName>rowValue</rowValueName>
 </rowName>
 </rset>
]
</respName>

Response Message Format (all other requests)

lengthInBytes
<respName [id="id"]>
[
 originalXMLRequest
]
 <res error="error" affected="affected"
[description="description"]/>
</respName>

Chapter 5
XML Response Messages

5-4

Response Message Parameters

Table 5-2 Response Message Parameters (XML)

Parameter Description Values

lengthInBytes Number of bytes following to
form XML request. This is a 4-
byte binary value.

0-4294967295

respName The name of the response based
on the original XML request sent.

A string with 1 to 64 characters.
The value is the request name
appended with Resp, for
example, for the
<updateSubscriber>
request, the response name is
updateSubscriberResp. If the
request name is invalid, or the
XML cannot be parsed, the
response name is errorResp.

id (Optional) Transaction ID value provided in
the request and passed back in
the response.

1-4294967295

originalXMLRequest (Optional) The text of the original XML
request that was sent. This
parameter is present only if the
resonly=n attribute is set in
the original request.

A string with 1 to 4096
characters.

error Whether or not operation was
successfully executed by the
XML Data server.

0 - success; non zero - failure.

affected The number of routing entities (or
subscribers if group="y")
created/updated.

0-10

description (Optional) A textual description associated
with the response. This may
contain more information as to
why a request failed or describe
the changes if it succeeds.

A string with 1 to 1024
characters.

rowName The name of the row type
returned.

This value is dependant on the
result set returned.

rowValue The value of the row type
returned.

This value is dependant on the
result set returned.

rowAttributeName The name of the row attribute
name returned.

This value is dependant on the
result set returned.

rowAttributeValue The value of the row attribute
name returned.

This value is dependant on the
result set returned.

5.4.1 Update and Delete Subscriber Command
If the XML command successfully updates or deletes a subscriber, the response description
text indicates the deleted/created/changed IMSI and/or MSISDN and/or Extender Identifier
values and a list of the subscriber destination values.

Chapter 5
XML Response Messages

5-5

Note:

Destination values are listed only if there were created or modified IMSI
and/or MSISDN and/or Extender Identifier routing entities.

Description text format

[description=“[deleted ({imsi nnnn|dn nnnn|extid nnnn }[, imsi
nnnn|,dn nnnn|,extid nnnn]…)]
[, created ({imsi nnnn|dn nnnn|extid nnnn }[, imsi nnnn|,dn
nnnn|,extid nnnn]…)]
[, changed ({imsi nnnn|dn nnnn|extid nnnn }[, imsi nnnn|,dn
nnnn|,extid nnnn]…)]
[, imshss nnnn][, ltehss nnnn][, pcrf nnnn][, ocs nnnn]
[, ofcs nnnn][, aaa nnnn][, userdef1 nnnn][, userdef2 nnnn]
[, mtchss nnnn]”]

<updateSubscriber> description text example

description=”deleted (imsi 444444444444440, dn 19195550000, extid
test@oracle.com), created (imsi 444444444444441, dn 19195550001, dn
19195550002, extid test1@oracle1.com), imshss imshss2, ltehss ltehss1”

5.5 Supported Request Messages
Table 5-3 lists the requests supported by the XML Data server. Unsupported
operations/requests are rejected with an INV_REQUEST_NAME error code. XML
Data server clients are to construct requests as specified in the sections referenced in
Table 5-3.

Table 5-3 Supported XML Data Server Requests

Request Description Section

startTransaction Start Database Transaction Start Transaction

commit Commit Database Transaction Commit Transaction

rollback Abort Database Transaction Rollback Transaction

tx Block Transaction Block Transactions

updateSubscriber Create/Update IMSI/MSISDN/
External Identifier Routing

Update Subscriber

deleteSubscriber Delete IMSI/MSISDN/External
Identifier Routing

Delete Subscriber

readSubscriber Get IMSI/MSISDN/External
Identifier Routing

Read Subscriber

updateSubscriberNai Create/Update NAI Routing Update Subscriber NAI

deleteSubscriberNai Delete NAI Routing Delete Subscriber NAI

readSubscriberNai Get NAI Routing Read Subscriber NAI

updateDomain Create/Update Domain
Identifier Routing

Update Domain

Chapter 5
Supported Request Messages

5-6

Table 5-3 (Cont.) Supported XML Data Server Requests

Request Description Section

deleteDomain Delete Domain Identifier
Routing

Delete Domain

readDomain Get Domain Identifier Routing Read Domain

5.6 Start Transaction

5.6.1 Request
The <startTransaction> request begins a database transaction.

Data manipulation and query requests (update, delete, and read) can be sent within the
context of a transaction. A client connection can only have one transaction open at a time.

Data manipulation requests are evaluated for validity and applied to a local database view,
which is a virtual representation of the main database plus local modifications made within
this active transaction. Local database view changes are not committed to the main database
until the transaction is ended with a <commit> request.

If a <startTransaction> request is sent, and then the connection is lost or the user logs
off without sending a <commit> or <rollback> request, all pending requests are rolled
back.

A provisioning session can have one transaction open at a time. If a <startTransaction>
request is sent, another <startTransaction> request will fail with an ACTIVE_TXN error.

A timeout occurs between the <startTransaction> and <commit> requests. If the
<commit> request is not sent out within the configured "Maximum Transaction Lifetime" on
the SDS GUI (we recommend you see the SDS Online Help for more information) of the
<startTransaction> request, the XML provisioning requests are rolled back (changes not
applied to database).

A transaction can only be opened by one client at a time. If a transaction is already opened
by another client, the <startTransaction> request is rejected immediately with
WRITE_UNAVAIL or is queued up for the time specified by the timeout parameter. If the
timeout parameter is specified with a non-zero value and that period of time elapses before
the transaction is opened, the <startTransaction> request is rejected with
WRITE_UNAVAIL.

Data manipulation requests are evaluated for validity and applied to a local database view
which is a virtual representation of the main database plus local modifications made within
this active transaction.

Local database view changes are not committed to the main database until the transaction is
ended with a <commit> request.

The request can be aborted and rolled back with a <rollback> request any time before the
transaction is ended with a <commit> request.

A block transaction (<tx> … </tx>) is not allowed with a normal transaction, and will result
in an INV_REQ_IN_NORMAL_TX error being returned for that request.

Chapter 5
Start Transaction

5-7

Request Format

<startTransaction [resonly="resonly"] [id="id"] [timeout="timeout"]/>

Parameters

Table 5-4 <startTransaction> Parameters (XML)

Parameter Description Values

resonly (Optional) Indicates whether the
response should consist of the
result only, without including
the original request in the
response.

y - Only provide the result, do
not include the original request
(default).

n - Include the original request
in the response.

id (Optional) Transaction ID value provided
in request, and will be passed
back in the response.

1-4294967295

timeout (Optional) The amount of time (in
seconds) to wait to open a
transaction if another
connection already has one
open. Clients waiting to open a
transaction will be processed
in the order that the requests
were received.

0 (return immediately if not
available) to 3600 seconds
(default is 0).

5.6.2 Response
The <startTransactionResp> response returns the result of starting a database
transaction. If the response error code indicates success, then the database
transaction was successfully started. If any failure response is returned, then the
database transaction was not started.

Response Format

lengthInBytes
<startTransactionResp [id="id"]>
[
 originalXMLRequest
]
 <res error="error" affected="affected"
[description="description"]/>
</startTransactionResp>

Response Parameters

The parameters for all of the response commands are shown in XML Response
Messages.

Chapter 5
Start Transaction

5-8

Error Codes

Table 5-5 shows the common error codes for the <startTransactionResponse>. See
SDS Response Message Error Codes for a full list of error codes.

Table 5-5 <startTransactionResp> Error Codes (XML)

Error Code Description

SUCCESS Transaction was successfully started.

NO_WRITE_PERMISSION The client making the connection does not have
write access permissions.

WRITE_UNAVAILABLE Another client already has a transaction open.
This will only be returned to clients who do have
write access permissions.

ACTIVE_TXN A transaction is already open on this connection.

5.6.3 Examples
Start a Transaction Within 2 Minutes (success)

This example successfully starts a transaction within 2 minutes.

Request:

<startTransaction id=”101” timeout=”120”></startTransaction>

Response:

<startTransactionResp id=”101”>
 <res error=”0” affected=”0”/>
</startTransactionResp>

Start a Transaction Immediately (fail)

This example attempts to immediately start a transaction but fails due to another client having
a transaction open.

Request:

<startTransaction resonly=”n” id=”102”></startTransaction>

Response:

<startTransactionResp id=”102”>
 <startTransaction resonly=”n” id=”102”></startTransaction>
 <res error=”1005” affected=”0”/>
</startTransactionResp>

Chapter 5
Start Transaction

5-9

5.7 Commit Transaction

5.7.1 Request
The <commit> request commits an active database transaction.

If the currently opened transaction has one or more successful updates, then
committing the transaction will cause all the database changes to be committed. All
previous updates, even though they received a successful error code, are not
committed to the database until the <commit> request is received.

Request Format

<commit [resonly="resonly"] [id="id"]/>

Parameters

Table 5-6 <commit> Request Parameters (XML)

Parameter Description Values

resonly (Optional) Indicates whether the
response should consist of the
result only, without including
the original request in the
response.

y - Only provide the result, do
not include the original request
(default).

n - Include the original request
in the response.

id (Optional) Transaction ID value provided
in the request and passed
back in the response.

1-4294967295

5.7.2 Response
The <commitResp> response returns the results of committing a database
transaction. If the response error code indicates success, then the update was
successfully committed in the database. If any failure response is returned, then the
database commit failed. The <commit> request causes the transaction to end
regardless of whether any updates were actually made to the database.

Note:

The affected row count in the XML response will always be 0. It does not
indicate how many rows were modified within the transaction.

Response Format

lengthInBytes
<commitResp [id="id"]>
[
 originalXMLRequest

Chapter 5
Commit Transaction

5-10

]
 <res error="error" affected="affected" [description="description"]/>
</commitResp>

Response Parameters

The parameters for all of the response commands are shown in XML Response Messages.

Error Codes

Table 5-7 lists the common error codes for the <commitResp> response. See SDS
Response Message Error Codes for a complete list of error codes.

Table 5-7 <commitResp> Error Codes (XML)

Return Code Description

SUCCESS Database transaction was committed successfully.

NO_ACTIVE_TXN A transaction is not currently open on this
connection.

5.7.3 Examples
Commit a Transaction (success)

This example successfully commits a transaction.

Request:

<commit id=”101”></commit>

Response:

<commitResp id=”101”>
 <res error=”0” affected=”0”/>
</commitResp>

Commit a Transaction that is not Open (fail)

This example attempts to commit a transaction but fails because a transaction was not open.

Request:

<commit resonly=”n” id=”102”></commit>

Response:

<commitResp id=”102”>
 <commit resonly=”n” id=”102”></commit>
 <res error=”1009” affected=”0”/>
</commitResp>

Chapter 5
Commit Transaction

5-11

5.8 Rollback Transaction

5.8.1 Request
The <rollback> request aborts the currently active database transaction. Any
updates are rolled back prior to closing the transaction.

Request Format

<rollback [resonly="resonly"] [id="id"]/>

Request Parameters

Table 5-8 <rollback> Parameters (XML)

Parameter Description Values

resonly (Optional) Indicates whether the
response should consist of the
result only, without including
the original request in the
response.

y - Only provide the result. Do
not include the original request
(default).

n - Include the original request
in the response.

id (Optional) Transaction ID value provided
in request, and passed back in
the response.

1-4294967295

5.8.2 Response
The <rollbackResp> response returns the results of aborting a database
transaction.

Response Format

lengthInBytes
<rollbackResp [id="id"]>
[
 originalXMLRequest
]
 <res error="error" affected="affected"
[description="description"]/>
</rollbackResp>

Parameters

The parameters for all of the XML response commands are shown in XML Response
Messages.

Error Codes

Table 5-9 lists the common error codes for the <rollbackResp> command. See SDS
Response Message Error Codes for a full list of error codes.

Chapter 5
Rollback Transaction

5-12

Table 5-9 <rollbackResp> Error Codes (XML)

Return Code Description

SUCCESS Database transaction was aborted successfully.

NO_ACTIVE_TXN A transaction is not currently open on this
connection.

5.8.3 Examples
Rollback a Transaction (success)

This example successfully rolls back a transaction.

Request:

<rollback resonly=”n” id=”101”></rollback>

Response:

<rollbackResp id=”101”>
 <rollback resonly=”n” id=”101”></rollback>
 <res error=”0” affected=”0”/>
</rollbackResp>

Rollback a Transaction that is not Open (fail)

This example attempts to rollback a transaction but fails because a transaction was not open.

Request:

<commit resonly=”n” id=”102”></rollback>

Response:

<rollbackResp id=”102”>
 <rollback resonly=”n” id=”102”></rollback>
 <res error=”1009” affected=”0”/>
</rollbackResp>

5.9 Block Transactions
A block transaction allows the user to group a number of requests within a transaction and
send them as a single unit of data. Requests are executed when the whole unit has been
sent.

The data unit consists of the block transaction tags, with a number of requests contained
within the tags.

It is possible to select if the result to each request is included in the response, by use of the
resonly attribute. The selection, even the default when not included, is applied to every

Chapter 5
Block Transactions

5-13

request within the block transaction. If an individual request sets the resonly
attribute, the attribute is overridden with the value from the block transaction.

The following requests are not permitted within a block transaction, and will result in a
INV_REQ_IN_BLOCK_TX error being returned:

• <startTransaction>

• <commit>

• <rollback>

5.9.1 Request
A block transaction allows the user to group a number of requests within a transaction
and send them as one "chunk" of data. Requests are executed when the whole
"chunk" has been sent. A "chunk" consists of the block transaction tags with a number
of requests contained within it.

It is possible to select if each individual request is included within its individual
response in the block transaction response or not by using the resonly attribute in the
<tx> entity. The selection (even the default when not included) is applied to every
request within the block transaction. If any request itself sets the resonly attribute, this
it is overridden with the value from the block transaction.

The following requests are not permitted within a block transaction and result in a
INV_REQ_IN_BLOCK_TX error being returned:

• <startTransaction>
• <commit>
• <rollback>

Request Format

<tx [resonly="resonly"] [id="id"] [timeout="timeout"]>
[
 <requestName ...>
 …
 </requestName>

 …

 <requestName ...>
 …
 </requestName>
]
</tx>

Chapter 5
Block Transactions

5-14

Request Parameters

Table 5-10 <tx> Request Parameters (XML)

Parameter Description Values

resonly (Optional) Indicates whether the response
should consist of the result only,
without including the original
request in the response.

y - Only provide the result, do not
include the original request
(default).

n - Include the original request in
the response.

id (Optional) Transaction ID value provided in
the request and passed back in
the response.

1-4294967295

timeout (Optional) The amount of time (in seconds)
to wait to open a transaction if
another connection already has
one open. Clients waiting to open
a transaction will be processed in
the order that their requests were
received.

0 (return immediately if not
available) to 3600 seconds.

The default is 0.

requestName (Optional) Contains 0-50 occurrences of the
following XML requests:
<updateSubscriber>,
<deleteSubscriber>,
<readSubscriber>,
<updateSubscriberNai>,
<deleteSubscriberNai>,
<readSubscriberNai>

5.9.2 Response
The <txResp> response returns the number or requests within the transaction, and a
response message for each request.

If an error occurred performing one request, then all requests within the transaction, up to
and including the failed request will automatically be rolled back. If all requests are
successful, then all requests within the transaction are automatically committed.

Response Format

lengthInBytes
<txResp nbreq="nbreq" [id="id"]>
[
 <requestResp ...>
 …
 <res error=...>
 </requestResp>

 …

 <requestResp ...>
 …
 <res error=...>

Chapter 5
Block Transactions

5-15

 </requestResp>
]
</txResp>

Response Parameters

Table 5-11 <txResp> Parameters (XML)

Parameter Description Values

lengthinbytes Number of bytes following to
form XML request. This is a 4
byte binary value.

0-4294967295

nbreq Number of requests within the
transaction. The response will
contain responses and
optionally the requests
themselves for each request.

0-50

id (Optional) Transaction ID value provided
in request and passed back in
the response.

1-4294967295

requestResp Contains 0-50 occurrences of
the following XML request
responses:
<updateSubscriberRes
p>,
<deleteSubscriberRes
p>,
<readSubscriberResp>,
<updateSubscriberNai
Resp>,
<deleteSubscriberNai
Resp>,
<readSubscriberNaiRe
sp>

Response Error Codes

Table 5-12 lists the common error codes for the Block Transaction response. See SDS
Response Message Error Codes for a full list of error codes.

Table 5-12 <txResp> Error Codes (XML)

Error Code Description

SUCCESS Database transaction was committed
successfully.

ACTIVE_TXN A transaction is already open on this
connection.

TXN_TOO_BIG Transaction too big (more than the configured
maximum number of requests).

DB_EXCEPTION An unexpected exception was thrown during
the database commit. The entire transaction
was rolled back to ensure predictable behavior.
Contact My Oracle Support.

Chapter 5
Block Transactions

5-16

Table 5-12 (Cont.) <txResp> Error Codes (XML)

Error Code Description

NOT_PROCESSED Not processed. The request was within a block
transaction, and was not processed due to an
error with another request within the same
block transaction.

NV_REQ_IN_BLOCK_TX An invalid request has been sent in a block
transaction (for example,
<startTransaction>, <commit>, or
<rollback>).

5.9.3 Examples
Start a Block Transaction Within 2 Minutes (success)

This example successfully starts a block transaction within two minutes and successfully runs
requests.

Request:

<startTransaction id=”101” timeout=”120”>
 <updateSubscriber ent=”subscriberRouting” ns=”dsr” id=”201”>
 <imsi>111111111100001</imsi>
 <imsi>111111111100002</imsi>
 <msisdn>8004605500</msisdn>
 <ltehss>LTE_HSS_1</ltehss>
 </updateSubscriber>
 <updateSubscriber ent=”subscriberRouting” ns=”dsr” id=”202”>
 <imsi>111111111100002</imsi>
 <msisdn>8004605500</msisdn>
 <imshss>none</imshss>
 <ltehss>LTE_HSS_4</ltehss>
 <aaa>AAA_4</aaa>
 </updateSubscriber>
 <deleteSubscriber ent=”subscriberRouting” ns=”dsr” id=”203”>
 <imsi>111111111100002</imsi>
 <msisdn>8004605500</msisdn>
 </deleteSubscriber>
</tx>

Response:

<txResp nbreq=”3” id=”101”>
 <updateSubscriberResp id=”201”>
 <res error=”0” affected=”3”/>
 </updateSubscriberResp>
 <updateSubscriberResp id=”202”>
 <res error=”0” affected=”2”/>
 </updateSubscriberResp>
 <deleteSubscriberResp id=”203”>
 <res error=”0” affected=”2”/>

Chapter 5
Block Transactions

5-17

 </deleteSubscriberResp>
</txResp>

Block Transaction Failed (and Rolled Back)

This example attempts to run requests within a block transaction, but the second
request fails. All requests are rolled back.

Request:

<tx id=”102”>
 <updateSubscriber ent=”subscriberRouting” ns=”dsr” id=”201”>
 <imsi>111111111100001</imsi>
 <imsi>111111111100002</imsi>
 <msisdn>8004605500</msisdn>
 <ltehss>LTE_HSS_1</ltehss>
 </updateSubscriber>
 <updateSubscriber ent=”subscriberRouting” ns=”dsr” id=”202”>
 <imsi>111111111100002</imsi>
 <msisdn>8004605500</msisdn>
 <imshss>none</imshss>
 <ltehss>BAD_VALUE</ltehss>
 <aaa>AAA_4</aaa>
 </updateSubscriber>
 <deleteSubscriber ent=”subscriberRouting” ns=”dsr” id=”203”>
 <imsi>111111111100002</imsi>
 <msisdn>8004605500</msisdn>
 </deleteSubscriber>
</tx>

Response:

<txResp nbreq=”3” id=”102”>
 <updateSubscriberResp id=”201”>
 <res error=”0” affected=”3”/>
 </updateSubscriberResp>
 <updateSubscriberResp id=”202”>
 <res error=”2006” affected=”0”/>
 </updateSubscriberResp>
 <deleteSubscriberResp id=”203”>
 <res error=”1” affected=”0”/>
 </deleteSubscriberResp>
</txResp>

5.10 Insert Subscriber
Insert Subscriber functionality is basically the same for XML Message Definitions as it
is for SOAP Response Messages. See the following sections for pertinent information.

Chapter 5
Insert Subscriber

5-18

Note:

The insertAddressList tag is not required in the XML insert subscriber
requests.

• Subscriber and Routing Data Concepts

• Insert Subscriber Request

• Insert Subscriber Response

• Insert Subscribers Examples

5.11 Update Subscriber

5.11.1 Subscriber and Routing Data
A routing entity contains the IMSI or MSISDN value along with up to eight destination names
that refer to destination data which contains FQDN and realm values that are used for routing
messages.

A subscriber is a group of related IMSI and/or MSISDN routing entities and an optional
Account ID value. All routing entities within a subscriber have the same destination values.

A stand-alone routing entity is a routing entity that is not assigned to any subscriber.

Each IMSI or MSISDN routing entity is either a stand-alone routing entity or is assigned to a
single subscriber.

Note:

You can only add a subscriber to a subscriber table, if the Account ID, MSISDN, or
IMSI is not already in the table. If the table already contains any of these values, the
add function fails and an error condition report is generate that contains the reason
for the failure.

5.11.2 Request
The <updateSubscriber> request provisions IMSI and MSISDN routing data and can
provision subscriber data. The request updates existing routing entities, and creates any new
routing entities that do not exist.

The request allows for the provisioning of IMSI, MSISDN, or combinations of IMSI and
MSISDNs to be associated with eight different destinations.

A destination name can be specified as "none", which removes the association of that
destination from the specified routing entity(s).

Semantic Rules (all requests)

• At least one routing entity (IMSI or MSISDN) must be specified.

Chapter 5
Update Subscriber

5-19

• No more than 10 routing entities (IMSI, MSISDN, or combinations of the two) can
be specified.

• A destination name must already exist in the database.

• Each destination name type can only be specified once.

• All specified routing entities will be provisioned with the same destination value(s).

• Any existing destination(s) for a routing entity will not be changed/removed if not
specified in the request.

• Specifying a destination name of “none” removes the association of that
destination from the specified routing entity(s).

Semantic Rules (requests that do not specify the group attribute or specify
group="n")

• The accountId, deleteAccountId, deleteImsi, and deleteMsisdn
parameters cannot be specified.

• All specified IMSI and MSISDN values must be for stand-alone routing entities or
they all must be assigned to one subscriber. There cannot be a mixture of stand-
alone routing entities and routing entities that are part of a subscriber.

• At least one routing entity (IMSI or MSISDN) must be specified.

• A maximum of 10 routing entities (IMSI, MSISDN, or combinations of the two) can
be specified.

• At least one destination must be specified.

• All specified routing entities will be provisioned with the same destination value(s).

Semantic (requests that specify attribute group="y")

• The accountId, deleteAccountId, deleteImsi, and deleteMsisdn
parameters can be specified.

• All specified Account ID, IMSI, or MSISDN values must be assigned to one
subscriber or must exist in stand-alone routing entities. After the command
successfully completes, all specified values will be assigned to one subscriber.

• All specified deleteAccountId, deleteImsi, or deleteMsisdn values that
exist in the database must be assigned to the same subscriber. All Account ID,
IMSI or MSISDN values must be assigned to the same subscriber or not assigned
to any subscriber.

• At least one IMSI, MSISDN, or Account ID value must be specified.

• The deleteAccountId, deleteImsi, deleteMsisdn values and all
destination tags and values are optional. This allows a user to just add an Account
ID or MSISDN and/or IMSI values to a subscriber.

• A maximum of one accountId, one deleteAccountId, siximsi, six
deleteImsi, six msisdn, and/or six deleteMsisdn values can be specified. If
any of these limits are exceeded, the request fails.

• All specified accountId, imsi, and msisdn values that are not currently
associated with a subscriber will be assigned to the same subscriber. They are
added to an existing subscriber or new subscriber.

• If a new subscriber is being created with all new routing entities, all specified
routing entities will be provisioned with the specified destination values.

Chapter 5
Update Subscriber

5-20

• If a new subscriber is being created with at least one existing stand-alone routing entity,
all destination values from existing stand-alone routing entities must be the same prior to
applying any specified destination changes. All new routing entities will inherit their
destinations values from an existing stand-alone routing entity with the applied
destination changes.

• If existing stand-alone routing entities are being added to an existing subscriber, the
destination values in each stand-alone routing entity must match the destination values
for the subscriber (extracted from any of the subscriber's routing entities) prior to applying
any specified destination changes.

• If new routing entities are being added to an existing subscriber, the new routing entities
will inherit the destination values for the subscriber (extracted from any of the subscriber's
routing entities).

• If a new routing entity is being created, at least 1 of its destination values must not be
equal to none.

• The updated subscriber must have at least 1 IMSI or MSISDN routing entity.

• The updated subscriber can have 0 or 1 Account ID values, 0-6 IMSI values and 0-6
MSISDN values, as long as there is at least one IMSI or MSISDN value. If the result of
the update (deleting and then adding new Account ID, IMSI, and/or MSISDN values)
would cause too many Account ID, IMSI or MSISDN values, the request will fail.

• The subscriber's Account ID value can be updated only if it is currently null or deleted
within the request (as specified by the deleteAccountId parameter).

• If any of the values specified in the deleteAccountId, deleteImsi, or
deleteMsisdn parameters do not exist in the database, they will be ignored. If nothing
else changes for the subscriber, the NO_UPDATES is returned.

• If any of the values specified in the deleteAccountId, deleteImsi, or
deleteMsisdn parameters exist in the database, they must be assigned to the
subscriber being updated or the command will fail.

• If any of the values specified in the deleteImsi or deleteMsisdn parameters exist,
the routing entity will be deleted unless it is the last IMSI or MSISDN routing entity for the
subscriber, in which case the command will fail.

Request Format

<updateSubscriber ent="subscriberRouting" ns="dsr" [resonly="resonly"]
 [id="id"] [timeout="timeout"] [group="group"]>
[<deleteAccountId>deleteAccountId</deleteAccountId>]
[
 <deleteImsi>deleteImsi</deleteImsi>
 …
 <deleteImsi>deleteImsi</deleteImsi>
]
[
 <deleteMsisdn>deleteMsisdn</deleteMsisdn>
 …
 <deleteMsisdn>deleteMsisdn</deleteMsisdn>
]
[<accountId>accountId</accountId>]
[
 <imsi>imsi</imsi>
 …

Chapter 5
Update Subscriber

5-21

 <imsi>imsi</imsi>
]
[
 <msisdn>msisdn</msisdn>
 …
 <msisdn>msisdn</msisdn>
]
[<imshss>imshss</imshss>]
[<ltehss>ltehss</ltehss>]
[<pcrf>pcrf</pcrf>]
[<ocs>ocs</ocs>]
[<ofcs>ofcs</ofcs>]
[<aaa>aaa</aaa>]
[<userdef1>userdef1</userdef1>]
[<userdef2>userdef2</userdef2>]
</updateSubscriber>

Request Parameters

Table 5-13 <updateSubscriber> Request Parameters (XML)

Parameter Description Values

ent The entity name within the
global schema.

subscriberRouting

ns The namespace within the
global schema

dsr

resonly (Optional) Indicates whether the
response should consist of the
result only, without including
the original request in the
response

• y - Only provide the result,
do not include the original
request (default)

• n - Include the original
request in the response

id (Optional) Transaction id value provided
in request and passed back in
the response

1-4294967295

timeout (Optional) The amount of time (in
seconds) to wait to before
being able to perform a write if
another connection is
performing a write, or has a
transaction open. Clients
waiting to write are processed
in the order that their requests
were received.

If the request is being
performed within a transaction,
this parameter will have no
effect, as the client already
has a transaction open.

0 (return immediately if not
available) to 3600 seconds
(default is 0)

Chapter 5
Update Subscriber

5-22

Table 5-13 (Cont.) <updateSubscriber> Request Parameters (XML)

Parameter Description Values

group (Optional) Indicates if relationships
between a group of related
IMSI and/or MSISDN routing
entities and Account ID value
should be created/updated

• y - Create new or update
existing subscriber
relationships and update
destinations

• n - Only update
destinations, not
relationships between
routing entities (default)

deleteAccountId (Optional) A user-defined Account ID
value to delete

1 to 26 decimal digits

deleteImsi (Optional) An IMSI (specified in E.212
format) value to delete

10 to 15 numeric digits

deleteMsisdn (Optional) An MSISDN (specified in
E.164 international public
telecommunication numbering
plan format) value to delete

8 to 15 decimal digits

accountId (Optional) A user-defined Account ID
value to add or update

1 to 26 numeric digits

imsi (Optional) An IMSI (specified in E.212
format) to add or update

10 to 15 numeric digits

msisdn (Optional) An MSISDN (specified in
E.164 international public
telecommunication numbering
plan format) to add or update

8 to 15 numeric digits

imshss (Optional) The name of the IMS HSS
destination

A string with 1 to 32
characters

ltehss (Optional) The name of the LTE HSS
destination

A string with 1 to 32
characters

pcrf (Optional) The name of the PCRF
destination

A string with 1 to 32
characters

ocs (Optional) The name of the OCS
destination

A string with 1 to 32
characters

ofcs (Optional) The name of the OFCS
destination

A string with 1 to 32
characters

aaa (Optional) The name of the AAA server
destination

A string with 1 to 32
characters

userdef1 (Optional) The name of the first user
defined destination

A string with 1 to 32
characters

userdef2 (Optional) The name of the second user
defined destination

A string with 1 to 32
characters

5.11.3 Response
The <updateSubscriberResp> response returns the result of the request to provision
subscriber routing entities. There is a single result that applies to all routing entities supplied.
Either all routing entities were successfully updated, or no updates were made to any routing
entity.

Chapter 5
Update Subscriber

5-23

Note:

If an IMSI/MSISDN is updated with destination values that already exist, this
may result in NO_UPDATES being returned, which is not treated as an error.
When a routing entity is not updated, the count of affected rows in the
command is not incremented for that IMSI/MSISDN.

If applying all of the provisioning changes results in no database records being
modified (because the database already contained the updated values), the
NO_UPDATES error code is returned and the number of affected records is 0.

If a subscriber is successfully created or updated, the description field contains lists
of deleted, created and changed IMSI, MSISDN, and External Identifier values.

Response Format

lengthInBytes
<updateSubscriberResp [id="id"]>
[
 originalXMLRequest
]
 <res error="error" affected="affected"
[description="description"]/>
</updateSubscriberResp>

Parameters

The parameters for all of the response commands are shown in XML Response
Messages.

Error Codes

Table 5-14 lists the common error codes for the <updateSubscriberResp>
response. See SDS Response Message Error Codes for a full list of error codes.

Table 5-14 <updateSubscriberResp> Error Codes (XML)

Error Code Description

SUCCESS The update request was successfully
completed.

NO_UPDATES The request does not have updates to the
database.

DEST_NOT_FOUND Destination name does not exist.

TOO_MANY_ADDR Too many address values supplied.

NO_DEST_VAL No destination name supplied.

MISSING_PARAMETER A mandatory parameter is missing.

DEST_TYPE_MISMATCH Destination has a different destination type
than the desired destination type.

MULTIPLE_SUBSCRIBERS Specified parameters refer to multiple
subscribers.

SUBSCRIBER_TOO_BIG Resulting subscriber would exceed 6 IMSI, 6
MSISDN, or 10 External Identifier limit.

Chapter 5
Update Subscriber

5-24

Table 5-14 (Cont.) <updateSubscriberResp> Error Codes (XML)

Error Code Description

ACCTID_UPDATE_PROHIBITED An attempt was made to change an Account
ID without specifying the
<deleteAccountId> tag.

ROUTE_TYPE_MISMATCH Standalone and subscriber routes are not
allowed in same command.

DEL_ROUTE_NOT_PERMITTED Cannot delete last route from subscriber.

NO_ROUTES_SPECIFIED At least one IMSI, MSISDN, or External
Identifier must be specified.

ROUTE_DEST_MISMATCH Specified routes have different destinations.

DOMAIN_IDENTIFIER_NOT_FOUND Domain Identifier does not exist.

5.11.4 Examples
Below are examples of how to use the <updateSubscriber> request and likely response.
Some of these examples are based upon previous requests; hence, the order of the requests
could be important.

Add Standalone Routing Entities

This example creates new standalone IMSI and MSISDN routing entities and sets their
destination values to the specified values.

The result of this request is:

• New IMSI and MSISDN routing entities are created.

• All of the destination values for each routing entity are set to specified values.

Request:

<updateSubscriber ent=”subscriberRouting” ns=”dsr” resonly=”n” id=”101”>
 <imsi>111111111100001</imsi>
 <imsi>111111111100002</imsi>
 <imsi>111111111100003</imsi>
 <msisdn>8004605500</msisdn>
 <msisdn>8004605503</msisdn>
 <ltehss>LTE_HSS_1</ltehss>
</updateSubscriber>

Response:

<updateSubscriberResp id=”101”>
 <updateSubscriber ent=”subscriberRouting” ns=”dsr” resonly=”n” id=”101”>
 <imsi>111111111100001</imsi>
 <imsi>111111111100002</imsi>
 <imsi>111111111100003</imsi>
 <msisdn>8004605500</msisdn>
 <msisdn>8004605503</msisdn>
 <ltehss>LTE_HSS_1</ltehss>
 </updateSubscriber>

Chapter 5
Update Subscriber

5-25

 <res error=”0” affected=”5”>
</updateSubscriberResp>

Update Standalone Routing Entities Destinations

This example updates existing standalone IMSI and MSISDN routing entities with new
destination values.

Note:

This request does not update all NAI values that were specified in the
previous request.

The result of this request is that the IMSI and MSISDN routing entities are updated
with specified values.

Request:

<updateSubscriber ent=”subscriberRouting” ns=”dsr” id=”102”>
 <imsi>111111111100001</imsi>
 <imsi>111111111100002</imsi>
 <imsi>111111111100003</imsi>
 <msisdn>8004605500</msisdn>
 <ltehss>LTE_HSS_4</ltehss>
 <aaa>AAA_4</aaa>
</updateSubscriber>

Response:

<updateSubscriberResp id=”102”>
 <res error=”0” affected=”4”/>
</updateSubscriberResp>

Create Subscriber Using Existing Routing Entities (Success)

This example creates a subscriber using existing routing entities that all have the
same destination values.

After this request is completed, a new subscriber is created and all of the routing
entities are assigned to that subscriber.

Request:

<updateSubscriber ent=”subscriberRouting” ns=”dsr” id=”103” group=”y”>
 <imsi>111111111100001</imsi>
 <imsi>111111111100002</imsi>
 <msisdn>8004605500</msisdn>
</updateSubscriber>

Chapter 5
Update Subscriber

5-26

Response:

<updateSubscriberResp id=”103”>
 <res error=”0” affected=”1”/>
</updateSubscriberResp>

Create Subscriber Using Existing Routing Entities (Failure)

This example fails when creating a subscriber using existing routing entities because the
existing routing entities have different destination values.

No changes are made to the database because the request failed.

Request:

<updateSubscriber ent=”subscriberRouting” ns=”dsr” id=”104” group=”y”>
 <imsi>111111111100003</imsi>
 <msisdn>8004605503</msisdn>
</updateSubscriber>

Response:

<updateSubscriberResp id=”104”>
 <res error=”2029” affected=”0” description=”all routes must have the same
destination values”/>
</updateSubscriberResp>

Add Account ID to Existing Subscriber

This example adds an Account ID to an existing subscriber. Any of the subscriber's IMSI or
MSISDN values can be used. For this example, the MSISDN value is used.

The result of this request is that the subscriber will have an Account ID value.

Request:

<updateSubscriber ent=”subscriberRouting” ns=”dsr” id=”105” group=”y”>
 <accountId>80044400001234567890111112</accountId>
 <msisdn>8004605500</msisdn>
</updateSubscriber>

Response:

<updateSubscriberResp id=”105”>
 <res error=”0” affected=”1”>
</updateSubscriberResp>

Modify Destinations for Existing Subscriber

This example modifies a destination value for an existing subscriber. Any of the subscriber's
IMSI, MSISDN or Account ID values can be used. For this example, an IMSI value is used.

Chapter 5
Update Subscriber

5-27

Note:

It does not matter if group="y" is specified. The same changes are always
applied to the whole subscriber.

The result of this request is that all of the subscriber's IMSI and MSISDN routing
entities will have a new destination value

Request:

<updateSubscriber ent=”subscriberRouting” ns=”dsr” id=”106”>
 <imsi>111111111100002</imsi>
 <ltehss>LTE_HSS_99</ltehss>
</updateSubscriber>

Response:

<updateSubscriberResp id=”106”>
 <res error=”0” affected=”3”/>
</updateSubscriberResp>

Replace Subscriber's MSISDN value

This example replaces an MSISDN value for an existing subscriber. The new MSISDN
routing entity inherits the destination values from an old IMSI or MSISDN routing entity.
(It doesn't matter which of the Subscriber's routing entities is used because they all
have the same destination values.)

The result of this request is:

• The old MSISDN routing entity is deleted from the database.

• The new MSISDN routing entity is added to the database, its destination values
are set to the subscriber's destination values, and the new MSISDN value is
assigned to the subscriber (relationships are established).

Note:

If the new MSISDN routing entity already exists in the database, and it
has the same destination values as the subscriber, the only change is
that the routing entity is assigned to the subscriber.

Request:

<updateSubscriber ent=”subscriberRouting” ns=”dsr” id=”107” group=”y”>
 <deleteMsisdn>8004605500</deleteMsisdn>
 <msisdn>8884605500</msisdn>
</updateSubscriber>

Chapter 5
Update Subscriber

5-28

Response:

<updateSubscriberResp id=”107”>
 <res error=”0” affected=”1”/>
</updateSubscriberResp>

Replace Subscriber's Account ID, 2 IMSIs, and 1 MSISDN Values

This example replaces several identification (Account ID, IMSI and MSISDN) values for an
existing subscriber. The new IMSI and MSISDN routing entities inherit the destination values
from the old IMSI and MSISDN routing entities. It does not matter which of the Subscriber's
routing entities is used because they all have the same destination values.

The result of this request is:

• The old IMSI and MSISDN routing entities are deleted from the database.

• The new IMSI and MSISDN routing entities are added to the database, their destination
values are set to the subscriber's destination values, and the routing entities are assigned
to the subscriber (relationships are established).

Note:

If the new IMSI and MSISDN routing entities already exist in the database and
they have the same destination values as the subscriber, the only change is
that the new IMSI and MSISDN values are assigned to the subscriber.

• The subscriber's Account ID value is changed.

Request:

<updateSubscriber ent=”subscriberRouting” ns=”dsr” id=”108” group=”y”>
 <deleteAccountId>80044400001234567890111112</deleteAccountId>
 <deleteImsi>111111111100001</deleteImsi>
 <deleteImsi>111111111100002</deleteImsi>>
 <deleteMsisdn>8884605500</deleteMsisdn>
 <imsi>888888888800001</imsi>
 <imsi>888888888800002</imsi>
 <msisdn>8884605555</msisdn>
</updateSubscriber>

Response:

<updateSubscriberResp id=”108”>
 <res error=”0” affected=”1”/>
</updateSubscriberResp>

Create Subscriber Using New Routing Entities (Success)

This example creates a subscriber using new routing entities with specified destinations.

The result of this request is:

• A new subscriber is created with the specified Account ID, IMSI and MSISDN values.

Chapter 5
Update Subscriber

5-29

• New IMSI and MSISDN routing entities are created with the specified destinations.

Request:

<updateSubscriber ent=”subscriberRouting” ns=”dsr” id=”109” group=”y”>
 <accountId>11111222223333344444555556</accountId>
 <imsi>333333333300001</imsi>
 <imsi>333333333300002</imsi>
 <msisdn>9198675309</msisdn>
 <ltehss>LTE_HSS_3</ltehss>
 <aaa>AAA_3</aaa>
</updateSubscriber>

Response:

<updateSubscriberResp id=”109”>
 <res error=”0” affected=”1”/>
</updateSubscriberResp>

Create Subscriber Using New Routing Entities (Failure)

This example fails when creating a subscriber using new routing entities because no
destinations were specified.

No changes are made to the database because the request failed.

Request:

<updateSubscriber ent=”subscriberRouting” ns=”dsr” id=”110” group=”y”>
 <accountId>1111122222</accountId>
 <imsi>333333333300003</imsi>
 <imsi>333333333300004</imsi>
 <msisdn>9198675309</msisdn>
</updateSubscriber>

Response:

<updateSubscriberResp id=”110”>
 <res error=”2013” affected=”0” description=”at least one destination
must be specified”/>
</updateSubscriberResp>

5.12 Delete Subscriber

5.12.1 Request
The <deleteSubscriber> request can be used to delete IMSI, MSISDN, and
External Identifier routing data and subscriber data. See Subscriber and Routing Data
for a description of subscriber and routing data.

Chapter 5
Delete Subscriber

5-30

The request allows for the removal of IMSI, MSISDN, External Identifier, or combinations of
IMSI, MSISDN, and External Identifier routing entities. Each routing entity contains up to nine
destination names.

When the group="y" attribute is specified, the request deletes all data associated with the
subscriber, including the Account ID, all relationships, and all IMSI, MSISDN, and External
Identifier routing entities that were assigned to the subscriber.

When group="y" is not specified or when group="n" is specified, only IMSI, MSISDN, and
External Identifier routing entities are deleted. If the IMSI, MSISDN, or External Identifier
value is assigned to a subscriber and there is at least one more IMSI, MSISDN, or External
Identifier value assigned to the subscriber, the IMSI, MSISDN, or External Identifier value is
removed from the subscriber.

The last IMSI, MSISDN, or External Identifier value cannot be removed from a subscriber -
the user must delete the whole subscriber by specifying the group="y" attribute.

Semantic Rules (requests that do not specify the group attribute or specify
group="n")

• All specified IMSI, MSISDN, or External Identifier values must be assigned to one
subscriber or must exist in standalone routing entities.

• The accountID parameter cannot be specified.

• At least one routing entity (IMSI, MSISDN, or External Identifier) must be specified.

• A maximum of 10 routing entities (IMSI, MSISDN, External Identifier, or combinations of
the two) can be specified.

• The last IMSI, MSISDN, or External Identifier for a subscriber cannot be deleted. Use
group="y" to delete whole subscriber).

Semantic Rules (requests that specify group="y")

• All specified accountId, imsi, msisdn, and externalIdentifier values must be
assigned to one subscriber. The specified imsi, msisdn, or externalIdentifier
values cannot exist in a standalone routing entity.

• The accountID parameter can be specified.

• At least 1 imsi, msisdn, externalIdentifier, or accountId value must be
specified.

• A maximum of 6 imsi, 6 msisdn, 10 externalIdentifier, and 1 accountId value
can be specified.

Request Format

<deleteSubscriber ent="subscriberRouting" ns="dsr" [resonly="resonly"]
 [id="id"] [timeout="timeout"] [group="group"]>
[<accountId>accountId</accountiId>]
[
 <imsi>imsi</imsi>
 …
 <imsi>imsi</imsi>
]
[
 <msisdn>msisdn</msisdn>

Chapter 5
Delete Subscriber

5-31

 …
 <msisdn>msisdn</msisdn>
]
[
 <externalId>externalIdentifier</externalId>
 …
 <externalId>externalIdentifier</externalId>
]
</deleteSubscriber>

Request Parameters

Table 5-15 <deleteSubscriber> Request Parameters (XML)

Parameter Definition Values

ent The entity name within the
global schema.

subscriberRouting

ns The namespace within the
global schema.

dsr

resonly (Optional) Indicates whether the
response should consist of the
result only, without including
the original request in the
response.

y - Only provide the result, do
not include the original request
(default).

n - Include the original request
in the response.

id (Optional) Transaction ID value provided
in request and passed back in
the response.

1-4294967295

timeout (Optional) The amount of time (in
seconds) to wait to before
being able to perform a write if
another connection is
performing a write, or has a
transaction open.

Clients waiting to write are
processed in the order that
their requests were received.

If the request is being
performed within a transaction,
this parameter will have no
effect, as the client already
has a transaction open.

0 (return immediately if not
available) to 3600 seconds
(default is 0).

group (Optional) Indicates if all of the
subscriber's data should be
deleted or just specified IMSI,
MSISDN, or External Identifier
routing entities.

y - Delete subscriber and all of
its IMSI, MSISDN, and
External Identifier routing
entities.

n - Only delete specified IMSI,
MSISDN, and External
Identifier routing entities
(default).

accountId A user-defined Account ID
value to delete.

1 to 26 numeric digits.

imsi (Optional) An IMSI (specified in E.212
format).

10 to 15 numeric digits.

Chapter 5
Delete Subscriber

5-32

Table 5-15 (Cont.) <deleteSubscriber> Request Parameters (XML)

Parameter Definition Values

msisdn (Optional) An MSISDN (specified in
E.164 international public
telecommunication numbering
plan format).

8 to 15 numeric digits.

externalId (Optional) An External Identifier
(specified in NAI format) value
to add or update.

A string with 3 to 257
characters.

5.12.2 Response
The <deleteSubscriberResp> response returns the result of the request to delete
subscriber routing entities. There is a single result that applies to all routing entities supplied.
Either all subscriber and/or routing entities were successfully deleted, or no deletes are
made.

If applying all of the delete changes results in no routing entities being deleted (because the
database already did not contain the specified values), the NO_UPDATES error code is
returned and the number of affected records is 0. If a subscriber is successfully deleted, the
description field contains lists of deleted IMSI and MSISDN values.

When a routing entity does not exist, this means that the affected rows count is not
incremented for that IMSI/MSISDN.

Response Format

lengthInBytes
<deleteSubscriberResp [id="id"]>
[
 originalXMLRequest
]
 <res error="error" affected="affected" [description="description"]/>
</deleteSubscriberResp>

Parameters

The parameters for all of the XML response commands are shown in XML Response
Messages.

Error Codes

Table 5-16 lists the common error codes for the <deleteSubscriberResp> command. See
SDS Response Message Error Codes for a full list of error codes.

Table 5-16 <deleteSubscriberResp> Error Codes (XML)

Error Code Description

SUCCESS The delete request was successfully completed.

NO_UPDATES The record does not exist in the database.

TOO_MANY_ADDR Too many address values supplied.

Chapter 5
Delete Subscriber

5-33

Table 5-16 (Cont.) <deleteSubscriberResp> Error Codes (XML)

Error Code Description

TOO_MANY_EXTERNAL_IDENTFIER Too many external identifier address values
supplied.

MISSING_PARAMETER A mandatory parameter is missing.

MULTIPLE_SUBSCRIBERS Specified parameters refer to multiple subscribers.

ROUTE_TYPE_MISMATCH Standalone and subscriber routes are not allowed
in same command.

DEL_ROUTE_NOT_PERMITTED Cannot delete last route from subscriber.

5.12.3 Examples
Delete Stand-Alone Routing Entities

This example deletes stand-alone IMSI and MSISDN routing entities.

Request:

<deleteSubscriber ent=”subscriberRouting” ns=”dsr” id=”101”>
 <imsi>111111111100021</imsi>
 <imsi>111111111100022</imsi>
 <msisdn>8004605520</msisdn>
</deleteSubscriber>

Response:

deleteSubscriberResp id=”101”>
 <res error=”0” affected=”3”/>
</deleteSubscriberResp>

Delete Several Routing Entities

This example successfully deletes two stand-alone IMSI routing entities. Other IMSI
values were not found and were not deleted.

Request:

<deleteSubscriber ent=”subscriberRouting” ns=”dsr” id=”102”>
 <imsi>777777777777777</imsi>
 <imsi>111111111100001</imsi>
 <imsi>111111111100002</imsi>
 <imsi>888888888888888</imsi>
</deleteSubscriber>

Response:

<deleteSubscriberResp id=”102”>
 <res error=”0” affected=”2”/>
</deleteSubscriberResp>

Chapter 5
Delete Subscriber

5-34

Delete Routing Entities Assigned to the Same Subscriber

This example deletes IMSI and MSISDN routing entities that are assigned to the same
subscriber. The example assumes that the subscriber has at least one more routing entity
other than the specified values.

Request:

<deleteSubscriber ent=”subscriberRouting” ns=”dsr” id=”103”>
 <imsi>111111111100002</imsi>
 <msisdn>8004605500</msisdn>
</deleteSubscriber>

Response:

<<deleteSubscriberResp id=”103”>
 <res error=”0” affected=”2”/>
</deleteSubscriberResp>

Delete Last Routing Entity for a Subscriber (success)

This example successfully deletes the subscriber and all IMSI and MSISDN routing entities
assigned to the subscriber. Any of the subscriber's Account ID, MSISDN or IMSI values can
be specified. In this example, all of the IMSI and MSISDN values are specified even though
only one value is required.

Request:

<deleteSubscriber ent=”subscriberRouting” ns=”dsr” id=”105”
 timeout=”10” group=”y”>
 <imsi>111111111100001</imsi>
 <imsi>111111111100002</imsi>
 <msisdn>8004605500</msisdn>
</deleteSubscriber>

Response:

<deleteSubscriberResp id=”105”>
 <res error=”0” affected=”1”/>
</deleteSubscriberResp>

Delete Last Routing Entity for a Subscriber (failure)

This example attempts to delete IMSI and MSISDN routing entities that are assigned to the
same subscriber. The example fails because the subscriber does not have any more routing
entities.

No changes are made to the database because the request failed.

Request:

<deleteSubscriber ent=”subscriberRouting” ns=”dsr” id=”104” timeout=”10”>
 <imsi>111111111100001</imsi>
 <imsi>111111111100002</imsi>

Chapter 5
Delete Subscriber

5-35

 <msisdn>8004605500</msisdn>
</deleteSubscriber>

Response:

deleteSubscriberResp id=”104”>
 <res error=”2028” affected=”0” description=
 ”cannot delete the last route from subscriber”/>
</deleteSubscriberResp>

Delete a Subscriber (success)

This example successfully deletes the subscriber and all IMSI and MSISDN routing
entities assigned to the subscriber. Any of the subscriber's Account ID, MSISDN or
IMSI values can be specified. In this example, the Account ID is specified.

Request:

<deleteSubscriber ent=”subscriberRouting” ns=”dsr” id=”106” group=”y”>
 <accountId>80044400001234567890111112</accountId>
</deleteSubscriber>

Response:

<deleteSubscriberResp id=”106”>
 <res error=”0” affected=”1”/>
</deleteSubscriberResp>

5.13 Read Subscriber

5.13.1 Request
The <readSubscriber> request extracts IMSI and MSISDN routing and subscriber
data. See Subscriber and Routing Data for a description of subscriber and routing
data. Each routing entity contains up to eight destination names.

When the group="y" attribute is specified, the request extracts and displays all data
associated with the subscriber. The returned response will have the Subscriber
Account ID, all IMSI and MSISDN values, and the eight destination values from any of
the subscriber routing entities is returned in the response. All routing entities for a
subscriber have the same destination values; hence, any routing entity can be used to
extract the values.

When group="y" is not specified or when group="n" is specified, only the specified
IMSI and MSISDN routing entities are retrieved. The returned response will have each
IMSI or MSISDN value along with individual up to eight destination values.

Semantic Rules (requests that do not specify the group attribute or specify
group="n")

• All specified imsi or msisdn values must be assigned to one subscriber or must
exist in stand-alone routing entities.

Chapter 5
Read Subscriber

5-36

• The accountId parameter cannot be specified.

• At least one routing entity (IMSI or MSISDN) must be specified.

• A maximum of 10 routing entities (IMSI, MSISDN, or combinations of the two) can be
specified.

Semantic Rules (requests that specify group="y")

• All specified accountId, imsi, or msisdn values must be assigned to one subscriber.
The specified imsi or msisdn values cannot exist in a stand-alone routing entity.

• The accountId parameter can be specified.

• A maximum of 6 imsi, 6 msisdn, and 1 accountId values can be specified.

Request Format

<readSubscriber ent="subscriberRouting" ns="dsr" [resonly="resonly"]
[id="id"]
 [timeout="timeout"] [group="group"]>
[<accountId>accountId</accountId>]
[
 <imsi>imsi</imsi>

 <imsi>imsi</imsi>
]
[
 <msisdn>msisdn</msisdn>
 …
 <msisdn>msisdn</msisdn>
]
</readSubscriber>

Request Parameters

Table 5-17 <readSubscriber> Request Parameters (XML)

Parameter Description Values

ent The entity name within the global
schema.

subscriberRouting

ns The namespace within the global
schema.

dsr

resonly (Optional) Indicates whether the response
should consist of the result only,
without including the original
request in the response.

• y - Only provide the result,
do not include the original
request (default).

• n - Include the original
request in the response.

id (Optional) Transaction ID value provided in
request and passed back in the
response.

1-4294967295

Chapter 5
Read Subscriber

5-37

Table 5-17 (Cont.) <readSubscriber> Request Parameters (XML)

Parameter Description Values

timeout (Optional) The amount of time (in seconds)
to wait before being able to
perform a read if another
connection is performing a write,
or has a transaction open.
Clients waiting to read will be
processed in the order that their
requests were received.
If the request is being performed
within a transaction, this
parameter will have no effect, as
the client already has a
transaction open.

0 (return immediately if not
available) to 3600 seconds. The
default is 0.

group (Optional) Indicates if all subscriber data
should be retrieved or just
specified IMSI or MSISDN
routing entities.

• y - Read subscriber and all
of its IMSI and MSISDN
routing entities.

• n - Only read specified
MSISDN and IMSI routing
entities (default).

accountId (Optional) A user-defined Account ID value
to read.

1 to 26 numeric digits.

imsi (Optional) An IMSI (specified in E.212
format).

10 to 15 numeric digits.

msisdn (Optional) An MSISDN (specified in E.164
international public
telecommunication numbering
plan format).

8 to 15 numeric digits.

5.13.2 Response
The <readSubscriberResp> response returns the result of the request to read
subscriber routing entities. Only those subscribers or routing entities that are found are
returned. The response message contains up to nine destinations (one for each
destination type, such as <ltehss>) for each routing entity or subscriber. Only
provisioned destination names are displayed. (for example, destination names="none"
are not displayed).

Variations can occur in the response, depending on whether a subscriber is being
retrieved or routing entities are being retrieved.

If routing entities are retrieved (group="y" was not specified or group="n" was
specified):

• There will not be any <subscriber> or <accountId> tags.

• The destination values are listed within each IMSI, MSISDN, or External Identifier
routing entity value.

If a subscriber is retrieved (group="y" is specified):

• The <subscriber> tag is used within the <rset> tag.

Chapter 5
Read Subscriber

5-38

• The <accountId> tag is displayed if the subscriber has an Account ID value defined.

• The destination values are listed once, after the last routing entity.

Response Format (group="y" is not specified)

lengthInBytes
<readSubscriberResp [id="id"]>
[
 originalXMLRequest
]
 <res error="error" affected="affected" [description="description"]/>
[
 <rset>
 [
 <imsi imsi="imsi">
 [<imshss>imshss</imshss>]
 [<ltehss>ltehss</ltehss>]
 [<pcrf>pcrf</pcrf>]
 [<ocs>ocs</ocs>]
 [<ofcs>ofcs</ofcs>]
 [<aaa>aaa</aaa>]
 [<userdef1>userdef1</userdef1>]
 [<userdef2>userdef2</userdef2>]
 [<mtchss>mtchss</mtchss>]
 </imsi>
 ...
 <imsi imsi="imsi">
 [<imshss>imshss</imshss>]
 [<ltehss>ltehss</ltehss>]
 [<pcrf>pcrf</pcrf>]
 [<ocs>ocs</ocs>]
 [<ofcs>ofcs</ofcs>]
 [<aaa>aaa</aaa>]
 [<userdef1>userdef1</userdef1>]
 [<userdef2>userdef2</userdef2>]
 [<mtchss>mtchss</mtchss>]
 </imsi>
]
 [
 <msisdn msisdn="msisdn">
 [<imshss>imshss</imshss>]
 [<ltehss>ltehss</ltehss>]
 [<pcrf>pcrf</pcrf>]
 [<ocs>ocs</ocs>]
 [<ofcs>ofcs</ofcs>]
 [<aaa>aaa</aaa>]
 [<userdef1>userdef1</userdef1>]
 [<userdef2>userdef2</userdef2>]
 [<mtchss>mtchss</mtchss>]
 </msisdn>
 ...
 <msisdn msisdn="msisdn">
 [<imshss>imshss</imshss>]
 [<ltehss>ltehss</ltehss>]

Chapter 5
Read Subscriber

5-39

 [<pcrf>pcrf</pcrf>]
 [<ocs>ocs</ocs>]
 [<ofcs>ofcs</ofcs>]
 [<aaa>aaa</aaa>]
 [<userdef1>userdef1</userdef1>]
 [<userdef2>userdef2</userdef2>]
 [<mtchss>mtchss</mtchss>]
 </msisdn>
]
 [
 <externalId externalId=”externalIdentifier">
 [<imshss>imshss</imshss>]
 [<ltehss>ltehss</ltehss>]
 [<pcrf>pcrf</pcrf>]
 [<ocs>ocs</ocs>]
 [<ofcs>ofcs</ofcs>]
 [<aaa>aaa</aaa>]
 [<userdef1>userdef1</userdef1>]
 [<userdef2>userdef2</userdef2>]
 [<mtchss>mtchss</mtchss>]
 </externalId>
 ...
 <externalId externalId="externalIdentifier">
 [<imshss>imshss</imshss>]
 [<ltehss>ltehss</ltehss>]
 [<pcrf>pcrf</pcrf>]
 [<ocs>ocs</ocs>]
 [<ofcs>ofcs</ofcs>]
 [<aaa>aaa</aaa>]
 [<userdef1>userdef1</userdef1>]
 [<userdef2>userdef2</userdef2>]
 [<mtchss>mtchss</mtchss>]
 </externalId>
]
 </rset>
]
</readSubscriberResp>

Response Format (group="y") is specified

lengthInBytes
<readSubscriberResp [id="id"]>
[
 originalXMLRequest
]
 <res error="error" affected="affected"
[description="description"]/>
[
 <rset>
 <subscriber>
 [<accountiId>accountId</accountId>]
 [<imsi>imsi</imsi>]
 ...
 [<imsi>imsi</imsi>]

Chapter 5
Read Subscriber

5-40

 [<msisdn>msisdn</msisdn>]
 ...
 [<msisdn>msisdn</msisdn>]
 [<imshss>imshss</imshss>]
 [<externalId>extId</externalId>]
 ...
 [<externalId>extId</externalId>]
 [<ltehss>ltehss</ltehss>]
 [<pcrf>pcrf</pcrf>]
 [<ocs>ocs</ocs>]
 [<ofcs>ofcs</ofcs>]
 [<aaa>aaa</aaa>]
 [<userdef1>userdef1</userdef1>]
 [<userdef2>userdef2</userdef2>]
 [<mtchss>mtchss</mtchss>]
 </subscriber>
 </rset>
]
</readSubscriberResp>

Response Parameters

Table 5-18 <readSubscriberResp> Parameters (XML)

Parameter Description Response

lengthinbytes Number of bytes following to
form XML request. This is a 4
byte binary value.

0-4294967295

id (Optional) Transaction ID value provided in
request and passed back in the
response.

1-4294967295

originalXMLRequest (Optional) The text of the original
<readSubscriber> XML
request that was sent.

Note: This is only present if the
resonly=”n” attribute is set
in the original request.

A string with 1 to 4096
characters.

error Error code. Whether or not
operation was successfully
executed by the XDS.

0 - success, non zero - failure.

affected If group="y", then the number
of subscribers read (0 or 1).
Otherwise, the number of routing
entities read (0 - 10).

0-10

description (Optional) A textual description associated
with the response. This may
contain more information as to
why a request failed.

A string with 1 to 1024
characters.

Chapter 5
Read Subscriber

5-41

Table 5-18 (Cont.) <readSubscriberResp> Parameters (XML)

Parameter Description Response

rset Contains 1 row for each
extracted record. Each row
contains a standalone routing
entity (MSISDN or IMSI value
with its destination values) or a
subscriber (list of related
MSISDN, IMSI and Account ID
values with the destination
values that are used by all
routing entities assigned to the
subscriber.)

subscriber (Optional) Contains all IMSI and MSISDN
values for a specific subscriber
with an optional Account ID and
all destinations defined for the
subscriber.

accountId (Optional) A user-defined Account ID value. 1 to 26 numeric digits.

imsi (Optional) An IMSI (specified in E.212
format).

10 to 15 numeric digits.

msisdn (Optional) An MSISDN (specified in E.164
international public
telecommunication numbering
plan format).

8 to 15 numeric digits.

externalId (Optional) An External Identifier (specified
in NAI format) value.

A string with 3 to 257 characters.

imshss (Optional) The name of the IMS HSS
destination.

A string with 1 to 32 characters.

ltehss (Optional) The name of the LTE HSS
destination.

A string with 1 to 32 characters.

pcrf (Optional) The name of the PCRF
destination.

A string with 1 to 32 characters.

ocs (Optional) The name of the OCS
destination.

A string with 1 to 32 characters.

ofcs (Optional) The name of the OFCS
destination.

A string with 1 to 32 characters.

aaa (Optional) The name of the AAA server
destination.

A string with 1 to 32 characters.

userdef1 (Optional) The name of the first user
defined destination.

A string with 1 to 32 characters.

userdef2 (Optional) The name of the second user
defined destination.

A string with 1 to 32 characters.

mtchss (Optional) The name of the MTC HSS
destination.

A string with 1 to 32 characters.

Response Error Codes

Table 5-19 lists the common error codes for the <readSubscriberResp> command.
See SDS Response Message Error Codes for a complete list of error codes.

Chapter 5
Read Subscriber

5-42

Table 5-19 <readSubscriberResp> Error Codes (XML)

Error Code Description

SUCCESS The read request was successfully completed.

TOO_MANY_ADDR Too many address values supplied.

TOO_MANY_EXTERNAL_IDENTFIER Too many external identifier address values
supplied.

MISSING_PARAMETER A mandatory parameter is missing.

IMSI_NOT_FOUND The specified IMSI does not exist.

MSISDN_NOT_FOUND The specified MSISDN does not exist.

EXTERNAL_IDENTIFIER_NOT_FOUND External Identifier does not exist.

SUBSCRIBER_NOT_FOUND The subscriber does not exist.

MULTIPLE_SUBSCRIBERS Specified parameters refer to multiple subscribers.

ROUTE_TYPE_MISMATCH Standalone and subscriber routes are not allowed
in same command.

5.13.3 Examples
The format of the response differs depending on whether the group="y" attribute is
specified.

If group="y" is NOT specified, then each routing entity that was found is displayed with its
destination values.

If group="y" is specified, then the result response includes an optional Account ID value (if
it exists), all MSISDN and IMSI values for that subscriber, and one set of destination values
(all routing entities within a subscriber have the same destination values).

Read Routing Entities (not subscribers)

This example reads IMSI and MSISDN routing entities and displays their destination values.
It does not matter if any of the routing entities are assigned to a subscriber because the same
result will occur.

Request:

<readSubscriber ent=”subscriberRouting” ns=”dsr” id=”101”>
 <imsi>111111111100001</imsi>
 <imsi>111111111100002</imsi>
 <msisdn>8004605500</msisdn>
</readSubscriber>

Response:

<readSubscriberResp>
 <res error=”0” affected=”3”/>
 <rset>
 <imsi imsi="111111111100001">
 <ltehss>LTE_HSS_4</ltehss>
 <aaa>AAA_4</aaa>
 </imsi>
 <imsi imsi="111111111100002">

Chapter 5
Read Subscriber

5-43

 <ltehss>LTE_HSS_4</ltehss>
 <aaa>AAA_4</aaa>
 </imsi>
 <msisdn msisdn="8004605500">
 <ltehss>LTE_HSS_4</ltehss>
 <aaa>AAA_4</aaa>
 </msisdn>
 </rset>
</readSubscriberResp>

Read Routing Entities with Not Found MSISDN/IMSI Values

This example reads IMSI and MSISDN routing entities and displays their destination
values. In this example, one MSISDN and one IMSI value do not exist, so the
response returns the two values that do exist. The same result will occur if any of the
routing entities are assigned to a subscriber.

Request:

<readSubscriber ent=”subscriberRouting” ns=”dsr” id=”102”>
 <imsi>777777777777777</imsi>
 <imsi>111111111100002</imsi>
 <msisdn>8004605500</msisdn>
 <msisdn>88888888888888</msisdn>
</readSubscriber>

Response:

<readSubscriberResp>
 <res error=”0” affected=”2”/>
 <rset>
 <imsi imsi="111111111100002">
 <ltehss>LTE_HSS_4</ltehss>
 <aaa>AAA_4</aaa>
 </imsi>
 <msisdn msisdn="8004605500">
 <ltehss>LTE_HSS_4</ltehss>
 <aaa>AAA_4</aaa>
 </msisdn>
 </rset>
</readSubscriberResp>

Read Subscriber (success)

This example reads a subscriber and displays all of the subscriber data. Any of the
subscriber Account ID, MSISDN or IMSI values can be specified. In this example, the
MSISDN value is specified.

Request:

<readSubscriber ent=”subscriberRouting” ns=”dsr” id=”103” group=”y”>
 <msisdn>8004605500</msisdn>
</readSubscriber>

Chapter 5
Read Subscriber

5-44

Response:

<readSubscriberResp>
 <res error=”0” affected=”1”/>
 <rset>
 <subscriber>
 <accountId>80044400001234567890111112</accountId>
 <imsi>"111111111100001></imsi>
 <imsi>111111111100002</imsi>
 <msisdn>8004605500</msisdn>
 <ltehss>LTE_HSS_4</ltehss>
 <aaa>AAA_4</aaa>
 </subscriber>
 </rset>
</readSubscriberResp>

Read Subscriber Fails for Stand-alone Routing Entity

This example attempts to read a subscriber. The request fails because the specified MSISDN
value is for a stand-alone routing entity.

Request:

<readSubscriber ent=”subscriberRouting” ns=”dsr” id=”1041” group=”y”>
 <msisdn>8004605503</msisdn>
</readSubscriber>

Response:

<readSubscriberResp>
 <res error=”2022” affected=”0” description=”subscriber not found”/>
</readSubscriberResp>

5.14 Update Subscriber NAI

5.14.1 Request
The <updateSubscriberNai> request provisions NAI routing entities. Each NAI value is
defined as a combination of an NAI host and NAI user value. For example,
"John.Smith@oracle.com" would have "John.Smith" as the NAI user value and "oracle.com"
as the NAI host value.

Each routing entity contains up to nine destination names. Each destination contains FQDN
and realm values, which are used for routing messages. The request can remove a
destination value from existing NAI routing entities by specifying "none" as the destination
name.

The request can add new routing entities or update destination names in existing routing
entities. These destination changes are applied to all specified NAI routing entities.

Semantic Rules

• Between 1 and 10 user names must be specified.

Chapter 5
Update Subscriber NAI

5-45

• At least one destination must be specified.

• The host name must already exist in the database.

• A destination name must already exist in the database.

• Each destination name type may only be specified once.

• All specified routing entities will be provisioned with the same destination value(s).

• Any existing destination(s) for a routing entity will not be changed/removed if not
specified in the request.

• Specifying a destination name of “none” will remove the association of that
destination from the specified routing entity(s).

Request Format

<updateSubscriberNai ent="subscriberRouting" ns="dsr"
[resonly="resonly"]
 [id="id"] [timeout="timeout"]>
 <host>host</host>
 <user>user</user>
[
 <user>user</user>
 …
 <user>user</user>
]
[<imshss>imshss</imshss>]
[<ltehss>ltehss</ltehss>]
[<pcrf>pcrf</pcrf>]
[<ocs>ocs</ocs>]
[<ofcs>ofcs</ofcs>]
[<aaa>aaa</aaa>]
[<userdef1>userdef1</userdef1>]
[<userdef2>userdef2</userdef2>]
[<mtchss>mtchss</mtchss>]
</updateSubscriberNai>

Request Parameters

Table 5-20 <updateSubscriberNai> Request Parameters (XML)

Parameter Description Values

ent The entity name within the
global schema.

subscriberRouting

ns The namespace within the
global schema.

dsr

resonly (Optional) Indicates whether the
response should consist of the
result only, without including
the original request in the
response.

y - Only provide the result, do
not include the original request
(default).

n - Include the original request
in the response.

id (Optional) Transaction id value provided
in request, and will be passed
back in the response

1-4294967295

Chapter 5
Update Subscriber NAI

5-46

Table 5-20 (Cont.) <updateSubscriberNai> Request Parameters (XML)

Parameter Description Values

timeout (Optional) The amount of time (in
seconds) to wait to before
being able to perform a write if
another connection is
performing a write, or has a
transaction open. Clients
waiting to write will be
processed in the order that
their requests were received.

If the request is being
performed within a transaction,
this parameter will have no
effect, as the client already
has a transaction open.

0 (return immediately if not
available) to 3600 seconds.
The default is 0.

host A host name. A string with 1 to 64
characters.

user A user name to be associated
with the host to form an NAI.

A string with 1 to 64
characters.

imshss (Optional) The name of the IMS HSS
destination.

A string with 1 to 32
characters.

ltehss (Optional) The name of the LTE HSS
destination.

A string with 1 to 32
characters.

pcrf (Optional) The name of the PCRF
destination.

A string with 1 to 32
characters.

ocs (Optional) The name of the OCS
destination.

A string with 1 to 32
characters.

ofcs (Optional) The name of the OFCS
destination.

A string with 1 to 32
characters.

aaa (Optional) The name of the AAA server
destination.

A string with 1 to 32
characters.

userdef1 (Optional) The name of the first user
defined destination.

A string with 1 to 32
characters.

userdef2 (Optional) The name of the second user
defined destination.

A string with 1 to 32
characters.

mtchss (Optional) The name of the MTC HSS
destination.

A string with 1 to 32
characters.

5.14.2 Response
The <updateSubscriberNaiResp> response returns the result of the request to provision
subscriber routing entities. There is a single result that applies to all routing entities supplied.
Either all routing entities were successfully updated, or no updates were made to any routing
entity.

Chapter 5
Update Subscriber NAI

5-47

Note:

If applying all of the provisioning changes results in no database records
being modified because the database already contained the updated values,
then the NO_UPDATES error code is returned, and the number of affected
records is 0.

Response Format

lengthInBytes
<updateSubscriberNaiResp [id="id"]>
[
 originalXMLRequest
]
 <res error="error" affected="affected"
[description="description"]/>
</updateSubscriberNaiResp>

Response Parameters

The parameters for all of the XML response commands are shown in XML Response
Messages.

Response Error Codes

Table 5-21 <updateSubscriberNaiResp> Error Codes (XML)

Error Code Description

SUCCESS The update request was successfully
completed.

NO_UPDATES All of the changes were already in the
database.

NAI_HOST_NOT_FOUND Host name does not exist.

TOO_MANY_NAI Too many NAI values supplied.

NO_DEST_VAL No destination name supplied.

MISSING_PARAMETER A mandatory parameter is missing.

DEST_NOT_FOUND Destination name does not exist.

DEST_TYPE_MISMATCH Destination has a different destination type
than the desired destination type.

5.14.3 Examples
Some of the following examples are based upon previous requests. The order of the
requests can be important.

Add New NAI Routing Entities

This example creates three new NAI routing entities and sets their destination values
to the specified values. This example assumes that the host and destination values
already exist.

Chapter 5
Update Subscriber NAI

5-48

The result of this request is:

• New NAI routing entities are created.

• All destination values for each routing entity are set to specified values.

Request:

<updateSubscriberNai ent=”subscriberRouting” ns=”dsr” id=”101”>
 <host>oracle.com</host>
 <user>John.Smith</user>
 <user>Jane.Doe</user>
 <user>Mike.Jones</user>
 <imshss>IMS_HSS_1</imshss>
 <ltehss>LTE_HSS_1</ltehss>
 <aaa>AAA_Texas</aaa>
</updateSubscriberNai>

Response:

<updateSubscriberNaiResp id=”101”>
 <res error=”0” affected=”3”/>
</updateSubscriberNaiResp>

Update NAI Routing Entities Destinations (success)

This example updates existing NAI routing entities with new destination values.

Note:

This request does not update all NAI values that were specified in the previous
request.

The result of this request is that the specified NAI routing entities are updated with specified
values.

Request:

<updateSubscriberNai ent=”subscriberRouting” ns=”dsr” id=”102”>
 <host>oracle.com</host>
 <user>Jane.Doe</user>
 <user>Mike.Jones</user>
 <ltehss>LTE_HSS_4</ltehss>
 <pcrf>PCRF_Ohio</pcrf>
</updateSubscriberNai>

Response:

<updateSubscriberNaiResp id=”102”>
 <res error=”0” affected=”2”/>
</updateSubscriberNaiResp>

Chapter 5
Update Subscriber NAI

5-49

Update NAI Routing Entities Destinations (failure)

This example fails to update existing NAI routing entities with new destination values
because the destination does not exist.

No changes are made to the database because the request failed.

Request:

<updateSubscriberNai ent=”subscriberRouting” ns=”dsr” id=”103”>
 <host>oracle.com</host>
 <user>Jane.Doe</user>
 <ltehss>junk</ltehss>
</updateSubscriberNai>

Response:

<updateSubscriberNaiResp id=”102”>
 <res error=”2006” affected=”0” description="destination not found”/>
</updateSubscriberNaiResp>

5.15 Delete Subscriber NAI

5.15.1 Request
The <deleteSubscriberNai> request removes NAI routing data.

Each NAI value is defined as a combination of an NAI host and NAI user value. For
example, "John.Smith@oracle.com" would have "John.Smith" as the NAI user value
and "oracle.com" as the NAI host value. The <deleteSubscriberNai> command
removes the NAI user value, but does not affect the NAI host value.

Semantic Rules

• Between 1 and 10 user names must be specified.

• The host name must already exist in the database.

Request Format

<deleteSubscriberNai ent="subscriberRouting" ns="dsr"
[resonly="resonly"]
 [id="id"] [timeout="timeout"]>
 <host>host</host>
 <user>user</user>
[
 <user>user</user>
 …
 <user>user</user>
]
</deleteSubscriberNai>

Chapter 5
Delete Subscriber NAI

5-50

Request Parameters

Table 5-22 <deleteSubscriberNai> Request Parameters (XML)

Parameter Description Values

ent The entity name within the global
schema.

subscriberRouting

ns The namespace within the global
schema.

dsr

resonly (Optional) Indicates whether the response
should consist of the result only,
without including the original
request in the response.

y - Only provide the result, do not
include the original request
(default).

n - Include the original request in
the response.

id (Optional) Transaction ID value provided in
request and passed back in the
response.

1-4294967295

timeout (Optional) The amount of time (in seconds)
to wait to before being able to
perform a write if another
connection is performing a write,
or has a transaction open.
Clients waiting to write will be
processed in the order that their
requests were received.

If the request is being performed
within a transaction, this
parameter will have no effect, as
the client already has a
transaction open.

0 (return immediately if not
available) to 3600 seconds. The
default is 0.

host A host name. A string with 1 to 64 characters.

user A user name to be associated
with the host to form an NAI.

A string with 1 to 64 characters.

5.15.2 Response
The <deleteSubscriberNaiResp> response returns the result of the request to delete
subscriber routing entities. A single result that applies to all routing entities supplied. Either all
routing entities were successfully deleted, or no deletes were made.

If applying all of the delete requests results in no database records being deleted (because
they already did not exist in the database), the NO_UPDATES error code is returned and the
number of affected records is 0.

Response Format

lengthInBytes
<deleteSubscriberNaiResp [id="id"]>
[
 originalXMLRequest
]

Chapter 5
Delete Subscriber NAI

5-51

 <res error="error" affected="affected"
[description="description"]/>
</deleteSubscriberNaiResp>

Response Parameters

The parameters for all of the XML response commands are shown in XML Response
Messages.

Response Error Codes

Table 5-23 lists the common error codes for <deleteSubscriberNaiResp>. See
SDS Response Message Error Codes for a complete list of error codes.

Table 5-23 <deleteSubscriberNaiResp> Error Codes (XML)

Error Code Description

SUCCESS The delete request was successfully
completed.

NO_UPDATES All of the records were already deleted from
the database.

NAI_HOST_NOT_FOUND Host name does not exist.

TOO_MANY_NAI Too many NAI values supplied.

NO_NAI_VAL No NAI value supplied.

5.15.3 Examples
Delete NAI Routing Entities

This example successfully deletes three NAI routing entities.

Request:

<deleteSubscriberNai ent=”subscriberRouting” ns=”dsr” id=”101”>
 <host>oracle.com</host>
 <user>John.Smith</user>
 <user>Jane.Doe</user>
 <user>Mike.Jones</user>
</deleteSubscriberNai>

Response:

<deleteSubscriberNaiResp id=”101”>
 <res error=”0” affected=”3”/>
</deleteSubscriberNaiResp>

Delete Several NAI Routing Entities

This example successfully deletes two NAI routing entities. Other NAI values were not
found and were not deleted.

Chapter 5
Delete Subscriber NAI

5-52

Request:

<deleteSubscriberNai ent=”subscriberRouting” ns=”dsr” id=”102”>
 <host>oracle.com</host>
 <user>John.Smith</user>
 <user>Ann.Jones</user>
 <user>Jane.Doe</user>
 <user>Mike.Jackson</user>
</deleteSubscriberNai>

Response:

<deleteSubscriberNaiResp id=”102”>
 <res error=”0” affected=”2”/>
</deleteSubscriberNaiResp>

5.16 Read Subscriber NAI

5.16.1 Request
The <readSubscriberNai> request extracts (reads) NAI routing entities and displays the
first eight destination values for each routing entity.

Semantic Rules

• Between 1 and 10 user names must be specified.

• The host name must already exist in the database.

Request Format

<readSubscriberNai ent="subscriberRouting" ns="dsr" [resonly="resonly"]
 [id="id"]>
 <host>host</host>
 <user>user</user>
[
 <user>user</user>
 …
 <user>user</user>
]
</readSubscriberNai>

Request Parameters

Table 5-24 <readSubscriberNai> Request Parameters (XML)

Parameter Description Values

ent The entity name within the global
schema.

subscriberRouting

ns The namespace within the global
schema.

dsr

Chapter 5
Read Subscriber NAI

5-53

Table 5-24 (Cont.) <readSubscriberNai> Request Parameters (XML)

Parameter Description Values

resonly (Optional) Indicates whether the response
should consist of the result only,
without including the original
request in the response.

• y - Only provide the result,
do not include the original
request (default).

• n - Include the original
request in the response.

id (Optional) Transaction id value provided in
request and passed back in the
response.

1-4294967295

timeout (Optional) The amount of time (in seconds)
to wait before being able to
perform a write if another
connection is performing a write,
or has a transaction open.
Clients waiting to write will be
processed in the order that their
requests were received.

If the request is being performed
within a transaction, this
parameter will have no effect, as
the client already has a
transaction open.

0 (return immediately if not
available) to 3600 seconds. The
default is 0.

host A host name. A string with 1 to 64 characters.

user A user name to be associated
with the host to form an NAI.

A string with 1 to 64 characters.

5.16.2 Response
The <readSubscriberNaiResp> response returns the result of the request to read
NAI subscriber routing entities. Only those NAI subscriber routing entities that are
found are returned. The response message contains up to eight destinations (one for
each destination type, such as <ltehss>) for each routing entity. Only provisioned
destination names are displayed. (for example, destination names="none" are not
displayed).

Response Format

lengthInBytes
<readSubscriberNaiResp [id="id"]>
[
 originalXMLRequest
]
 <res error="error" affected="affected"
[description="description"]/>
[
 <rset>
 <nai host="host" user="user">
 [<imshss>imshss</imshss>]
 [<ltehss>ltehss</ltehss>]
 [<pcrf>pcrf</pcrf>]
 [<ocs>ocs</ocs>]

Chapter 5
Read Subscriber NAI

5-54

 [<ofcs>ofcs</ofcs>]
 [<aaa>aaa</aaa>]
 [<userdef1>userdef1</userdef1>]
 [<userdef2>userdef2</userdef2>]
 </nai>
 [
 ...
 <nai host="host" user="user">
 [<imshss>imshss</imshss>]
 [<ltehss>ltehss</ltehss>]
 [<pcrf>pcrf</pcrf>]
 [<ocs>ocs</ocs>]
 [<ofcs>ofcs</ofcs>]
 [<aaa>aaa</aaa>]
 [<userdef1>userdef1</userdef1>]
 [<userdef2>userdef2</userdef2>]
 </nai>
]
 </rset>
]
</readSubscriberResp>

Response Parameters

Table 5-25 <readSubscriberNaiResp> Parameters (XML)

Parameter Description Values

lengthInBytes Number of bytes following to
form XML request. This is a 4
byte binary value.

0-4294967295

id (Optional) Transaction id value provided in
request and passed back in the
response.

1-4294967295

originalXMLRequest (Optional) The text of the original
<readSubscriber> XML
request that was sent. This is
only present if the
resonly=”n” attribute is set
in the original request.

A string with 1 to 4096
characters.

error Whether or not operation was
successfully executed by the
SDS.

0 - success, non zero - failure.

affected The number of routing entities
read.

0-10

description (Optional) A textual description associated
with the response. This may
contain more information as to
why a request failed. Only
present when the request fails.

A string with 1 to 1024
characters.

<rset> XML tag (Optional) Indicates rows of data are
returned. If no records are being
returned, this tag is not be
present.

Chapter 5
Read Subscriber NAI

5-55

Table 5-25 (Cont.) <readSubscriberNaiResp> Parameters (XML)

Parameter Description Values

host A host name, which is used with
all user values.

A string with 1 to 64 characters.

user The NAI user name to be
associated with the host to form
an NAI.

A string with 1 to 64 characters.
Must have 1-10 user values.

imshss (Optional) The name of the IMS HSS
destination.

A string with 1 to 32 characters.

ltehss (Optional) The name of the LTE HSS
destination.

A string with 1 to 32 characters.

pcrf (Optional) The name of the PCRF
destination.

A string with 1 to 32 characters.

ocs (Optional) The name of the OCS
destination.

A string with 1 to 32 characters.

ofcs (Optional) The name of the OFCS
destination.

A string with 1 to 32 characters.

aaa (Optional) The name of the AAA server
destination.

A string with 1 to 32 characters.

userdef1 (Optional) The name of the first user
defined destination.

A string with 1 to 32 characters.

userdef2 (Optional) The name of the second user
defined destination.

A string with 1 to 32 characters.

Response Error Codes

Table 5-26 lists the common error codes for the <readSubscriberNaiResp>
command. See SDS Response Message Error Codes for a complete list of error
codes.

Table 5-26 <readSubscriberNaiResp> Error Codes (XML)

Error Code Description

SUCCESS The delete request was successfully
completed.

NAI_HOST_NOT_FOUND Host name does not exist.

NAI_NOT_FOUND None of the specified NAI exists.

TOO_MANY_NAI Too many NAI values supplied.

MISSING_PARAMETER A mandatory parameter is missing.

5.16.3 Examples
Read NAI Routing Entities

This example successfully reads three NAI routing entities.

Request:

<readSubscriberNai ent=”subscriberRouting” ns=”dsr” id=”101”>
 <host>oracle.com</host>

Chapter 5
Read Subscriber NAI

5-56

 <user>John.Smith</user>
 <user>Jane.Doe</user>
 <user>Mike.Jones</user>
</readSubscriberNai>

Response:

<readSubscriberNaiResp id=”101”>
 <res error=”0” affected=”3”/>
 <rset>
 <nai host=”oracle.com" user=”John.Smith”>
 <imshss>IMS_HSS_1</imshss>
 <ltehss>LTE_HSS_1</ltehss>
 <aaa>AAA_Texas</aaa>
 </nai>
 <nai host=”oracle.com" user=”Jane.Doe”>
 <imshss>IMS_HSS_1</imshss>
 <ltehss>LTE_HSS_4</ltehss>
 <pcrf>PCRF_Ohio</pcrf>
 <aaa>AAA_Texas</aaa>
 </nai>
 <nai host=”oracle.com" user=”Mike.Jones”>
 <imshss>IMS_HSS_1</imshss>
 <ltehss>LTE_HSS_4</ltehss>
 <pcrf>PCRF_Ohio</pcrf>
 <aaa>AAA_Texas</aaa>
 </nai>
 </rset>
</readSubscriberNaiResp>

Read NAI Routing Entities

This example successfully reads two NAI routing entities. Other NAI values are not found

Request:

<readSubscriberNai ent=”subscriberRouting” ns=”dsr” id=”102”>
 <host>oracle.com</host>
 <user>John.Smith</user>
 <user>Ann.Jones</user>
 <user>Jane.Doe</user>
 <user>Mike.Jackson</user>
</readSubscriberNai>

Response:

<readSubscriberNaiResp id=”102”>
 <res error=”0” affected=”2”/>
 <rset>
 <nai host=”oracle.com" user=”John.Smith”>
 <imshss>IMS_HSS_1</imshss>
 <ltehss>LTE_HSS_1</ltehss>
 <aaa>AAA_Texas</aaa>
 </nai>

Chapter 5
Read Subscriber NAI

5-57

 <nai host="oracle.com" user=”Jane.Doe”>
 <imshss>IMS_HSS_1</imshss>
 <ltehss>LTE_HSS_4</ltehss>
 <pcrf>PCRF_Ohio</pcrf>
 <aaa>AAA_Texas</aaa>
 </nai>
 </rset>
</readSubscriberNaiResp>

Read NAI Routing Entities (Failure)

This example fails because no NAI subscribers are found.

Request:

<readSubscriberNai ent=”subscriberRouting” ns=”dsr” id=”103”>
 <host>oracle.com</host>
 <user>Kevin.Smith</user>
 <user>John.Doe</user>
</readSubscriberNai>

Response:

<readSubscriberNaiResp id=”103”>
 <res error=”2009” affected=”0” description=”nai not found” />
</readSubscriberNaiResp>

5.17 Update Domain

5.17.1 Request
The <updateDomainRequest> request provisions domain identifiers. For example,
John.Smith@tekelec.com would have John.Smith as the local identifier value and
tekelec.com as the domain identifier value.

Each domain identifier contains up to nine destination names. Each destination
contains FQDN and realm values, which are used for routing messages. The
<updateDomainRequest> request can remove a destination value from existing
domain identifier by specifying "none" as the destination name.

The <updateDomainRequest> request can add new domain identifier value or
update destination names in existing domain identifier records. These destination
changes are applied to the specific domain identifier.

Semantic Rules

• There must be at least one destination specified.

• There must be one domain identifier values specified, and supported up to 10
values.

• All specified destination names must already exist in the database.

• Each destination name type may only be specified once.

Chapter 5
Update Domain

5-58

• Specifying a destination name of "none" removes the association of that destination
from the specified routing entity(s).

Request Format

<updateDomain ent="subscriberRouting" ns="dsr" [resonly="resonly"] [id="id"]
[timeout="timeout"] >
 <domain>domainIdentifier</domain>
[
 <domain>domainIdentifier</domain>
 …
 <domain>domainIdentifier</domain>
]
[<imshss>imshss</imshss>]
[<ltehss>ltehss</ltehss>]
[<pcrf>pcrf</pcrf>]
[<ocs>ocs</ocs>]
[<ofcs>ofcs</ofcs>]
[<aaa>aaa</aaa>]
[<userdef1>userdef1</userdef1>]
[<userdef2>userdef2</userdef2>]
[<mtchss>mtchss</mtchss>]
</updateDomain>

Request Parameters

Table 5-27 <updateDomain> Parameters (XML)

Parameter Description Values

ent The entity name within the global
schema.

subscriberRouting

ns The namespace within the global
schema.

dsr

resonly (Optional) Indicates if the response should
consist of the result only, without
including the original request in
the response.

y - only provide the result, do
NOT include the original request
(default).

n - include the original request in
the response.

id (Optional) Transaction ID value provided in
request and passed back in the
response.

1 to 4294967295

timeout (Optional) The amount of time (in seconds)
to wait before being able to
perform a write if another
connection is performing a write,
or has a transaction open.
Clients waiting to write are
processed in the order that their
requests were received.

If the request is being performed
within a transaction, this
parameter will have no effect, as
the client already has a
transaction open.

0 (return immediately if not
available) to 3600 seconds
(default is 0)

Chapter 5
Update Domain

5-59

Table 5-27 (Cont.) <updateDomain> Parameters (XML)

Parameter Description Values

domain The domain Identifier name,
which is used for configuring
external identifier by associating
them with local identifier values.
Must have one or up to 10
domain identifier values.

A string with 1 to 128 characters.

imshss (Optional) The name of the IMS HSS
destination.

A string with 1 to 32 characters.

ltehss (Optional) The name of the LTE HSS
destination.

A string with 1 to 32 characters.

pcrf (Optional) The name of the PCRF
destination.

A string with 1 to 32 characters.

ocs (Optional) The name of the OCS
destination.

A string with 1 to 32 characters.

ofcs (Optional) The name of the OFCS
destination.

A string with 1 to 32 characters.

aaa (Optional) The name of the AAA server
destination.

A string with 1 to 32 characters.

userdef1 (Optional) The name of the first user
defined destination.

A string with 1 to 32 characters.

userdef2 (Optional) The name of the fsecond user
defined destination.

A string with 1 to 32 characters.

mtchss (Optional) The name of the MTC HSS
destination.

A string with 1 to 32 characters.

5.17.2 Response
The <updateDomainResp> response returns the result of the request to provision
domain identifier values. A single result applies to all domain identifier values supplied.
Either all domain identifier values were successfully updated, or no updates were
made.

If applying all of the provisioning changes results in no database records being
modified because the database already contained the updated values, then
NO_UPDATES error code is returned and the number of affected records is 0.

Response Format

The syntax of the response is the same for all requests. For more information, see
XML Response Messages.

lengthInBytes
<updateDomainResp [id="id"]>
[
 originalXMLRequest
]
 <res error="error" affected="affected"
[description="description"]/>
</updateDomainResp>

Chapter 5
Update Domain

5-60

Response Parameters

The parameters for all of the response commands are shown in XML Response Messages.

Response Error Codes

Table 5-28lists common error codes for this command. See SDS Response Message Error
Codes for a complete list of error codes.

Table 5-28 <updateDomainResp> Error Codes (XML)

Error Code Description

SUCCESS The update request was successfully completed.

NO_UPDATES The request does not have an update to the
database.

DOMAIN_IDENTIFIER_NOT_FOUND Domain Identifier does not exist.

NO_DEST_VAL No destination name supplied.

MISSING_PARAMETER A mandatory parameter is missing.

DEST_NOT_FOUND Destination name does not exist.

DEST_TYPE_MISMATCH Destination has a different destination type than
the desired destination type.

TOO_MANY_ADDR Too many address values supplied.

NO_DOMAIN_VAL No Domain Identifier value supplied

5.17.3 Examples
Below are some examples of how to use the <updateDomain> request and likely response.
Some of these examples are based upon previous requests; hence, the order of the requests
could be important.

Add New Domain Values

This example creates 3 new Domain Identifier values and sets their destination values to the
specified values.

The result of this request is

• New Domain Identifier values are created.

• All of the destination values for each routing entity are set to specified values.

Request:

<updateDomain ent=”subscriberRouting” ns=”dsr” id=”101”>
 <domain>tekelec.com</domain>
 <domain>oracle.com</domain>
 <domain>cgbu-oracle.com</domain>
 <imshss>IMS_HSS_1</imshss>
 <ltehss>LTE_HSS_1</ltehss>
 <aaa>AAA_Texas</aaa>
</updateDomain>

Chapter 5
Update Domain

5-61

Response:

<updateDomainResp id=”101”>
 <res error=”0” affected=”3”/>
</updateDomainResp>

Update Domain Identifier Destinations (Success)

This example updates existing Domain Identifiers with new destination values.

Note:

This request does not update all Domain Identifier values that were specified
in the previous request.

The result of this request is that the specified Domain Identifier values are updated
with specified destination values.

Request:

<updateDomain ent=”subscriberRouting” ns=”dsr” id=”102”>
 <domain>tekelec.com</domain>
 <domain>oracle.com</domain>
 <ltehss>LTE_HSS_4</ltehss>
 <pcrf>PCRF_Ohio</pcrf>
</updateDomain>

Result:

<updateDomainResp id=”102”>
 <res error=”0” affected=”2”/>
</updateDomainResp>

Update Domain Identifier Destinations (Failure)

This example fails to update existing Domain Identifiers with new destination values
because the destination does not exist.

No changes are made to the database because the request fails.

Request:

<updateDomain ent=”subscriberRouting” ns=”dsr” id=”103”>
 <domain>tekelec.com</domain>
 <domain>oracle.com</domain>
 <ltehss>junk</ltehss>
</updateDomain>

Chapter 5
Update Domain

5-62

Result:

<updateDomainResp id=”103”>
 <res error=”2006” affected=”0” description=”destination not found”/>
</updateDomainResp>

5.18 Delete Domain

5.18.1 Request
The <deleteDomain> request removes domain identifier values. For example, external
identifier John.Smith@tekelec.com would have John.Smith as the local identifier value and
tekelec.com as the domain identifier value. The <deleteDomain> removes the domain
identifier value, but only when there are no local identifier values are associated with it.

Semantic Rules

• All domain identifier names must already exist in the database.

• There must be one domain identifier value specified and support up to 10 values.

Request Format

<deleteDomain ent="subscriberRouting" ns="dsr" [resonly="resonly"] [id="id"]
[timeout="timeout"]>
 <domain>domainIdentifier</domain>
[
 <domain>domainIdentifier</domain>
 …
 <domain>domainIdentifier</domain>
]
</deleteDomain>

Request Parameters

Table 5-29 <deleteDomain> Parameters (XML)

Parameter Description Values

ent The entity name within the global
schema.

subscriberRouting

ns The namespace within the global
schema.

dsr

resonly (Optional) Indicates whether the response
should consist of the result only,
without including the original
request in the response.

y - only provide the result, do
NOT include the original request
(default).

n - include the original request in
the response.

id (Optional) Transaction ID value provided in
request and passed back in the
response.

1 to 4294967295

Chapter 5
Delete Domain

5-63

Table 5-29 (Cont.) <deleteDomain> Parameters (XML)

Parameter Description Values

timeout (Optional) The amount of time (in seconds)
to wait before being able to
perform a write if another
connection is performing a write,
or has a transaction open.
Clients waiting to write will be
processed in the order that their
requests were received.

If the request is being performed
within a transaction, this
parameter will have no effect, as
the client already has a
transaction open.

0 (return immediately if not
available) to 3600 seconds
(default is 0)

domain The Domain Identifier name,
which is used for configuring
external identifier by associating
them with local identifier values.
Must have one or up to 10
domain identifier values.

A string with 1 to 128 characters.

5.18.2 Response
This is the start of your topic.

The <deleteDomainResp> response returns the result of the request to delete
domain identifiers. There is a single result that applies to all domain identifiers
supplied. Either all domain identifiers were successfully deleted, or no deletes were
made.

Note:

If applying all of the delete requests results in no database records being
deleted (because they already did not exist in the database), the
NO_UPDATES error code is returned and the number of affected records is
0.

Response Format

The syntax for the <deleteDomainResp> request is shown here. For more
information, see XML Response Messages.

lengthInBytes
<deleteDomainResp [id="id"]>
[
 originalXMLRequest
]
 <res error="error" affected="affected"

Chapter 5
Delete Domain

5-64

[description="description"]/>
</deleteDomainResp>

Response Parameters

The parameters for all of the response commands are shown in XML Response Messages.

Response Error Codes

Table 5-30 lists the common error codes for the <deleteDomainResp> response. See SDS
Response Message Error Codes for a full list of error codes.

Table 5-30 <deleteDomainResponse> Error Codes (XML)

Error Code Description

SUCCESS The update request was successfully completed.

NO_UPDATES The request does not have an update to the
database.

TOO_MANY_ADDR Too many address values supplied.

NO_DOMAIN_VAL No Domain Identifier value supplied.

5.18.3 Examples
These examples show how to use the <deleteDomain> request and likely response.

Delete Domains

This example successfully deletes three Domain Identifiers.

Request:

<deleteDomain ent=”subscriberRouting” ns=”dsr” id=”101”>
 <domain>tekelec.com</domain>
 <domain>oracle.com</domain>
 <domain>cgbu-oracle.com</domain>
</deleteDomain>

Result:

<deleteDomainResp id=”101”>
 <res error=”0” affected=”3”/>
</deleteDomainResp>

Delete Some, but not all, Domains

This example successfully deletes two Domain Identifiers, but other Domain Identifiers were
not found; hence, they were not deleted.

Request:

<deleteDomain ent=”subscriberRouting” ns=”dsr” id=”102”>
 <domain>tekelec.com</domain>
 <domain>oracle.com</domain>

Chapter 5
Delete Domain

5-65

 <domain>redoracle.com</domain>
 <domain>myoracle.com</domain>
 <domain>oracletest.com</domain>
</deleteDomain>

Result:

<deleteDomainResp id=”102”>
 <res error=”0” affected=”2”/>
</deleteDomainResp>

5.19 Read Domain

5.19.1 Request
The <readDomain> request extracts (reads) Domain Identifiers and displays up to
nine destination values for each domain identifier.

Semantic Rules

• All domain identifier names must already exist in the database.

• There must be one domain identifier value specified and support up to 10 values.

Request Format

<readDomain ent="subscriberRouting" ns="dsr" [resonly="resonly"]
[id="id"]>
 <domain>domainidentifier</domain>
 [
 <domain>domainidentifier</domain>
 …
 <domain>domainidentifier</domain>
]
</readDomain>

Request Parameters

Table 5-31 <readDomain> Parameters (XML)

Parameter Description Value

ent The entity name within the
global schema.

subscriberRouting

ns The namespace within the
global schema.

dsr

resonly (Optional) Indicates whether the
response should consist of the
result only, without including
the original request in the
response.

y - Only provide the result, do
not include the original request
(default).

n - Include the original request
in the response.

Chapter 5
Read Domain

5-66

Table 5-31 (Cont.) <readDomain> Parameters (XML)

Parameter Description Value

id (Optional) Transaction ID value provided
in the request and passed
back in the response.

1-4294967295

5.19.2 Response
This is the start of your topic.

The <readDomainResp> response returns the result of the request to read Domain
Identifiers. Only those Domain Identifiers that are found are returned. The response message
contains up to nine destinations (1 for each destination type, such as <ltehss>) for each
domain identifier value. Only provisioned destination names are displayed. (that is,
destination names="none" are not displayed).

Response Format

The syntax of the <readDomainResp> request is show here. For more information, see XML
Response Messages.

lengthInBytes
<readDomainResp [id="id"]>
[
 originalXMLRequest
]
 <res error="error" affected="affected" [description="description"]/>
[
 <rset>
 <domain="domainidentifier">
 [<imshss>imshss</imshss>]
 [<ltehss>ltehss</ltehss>]
 [<pcrf>pcrf</pcrf>]
 [<ocs>ocs</ocs>]
 [<ofcs>ofcs</ofcs>]
 [<aaa>aaa</aaa>]
 [<userdef1>userdef1</userdef1>]
 [<userdef2>userdef2</userdef2>]
 [<mtchss>mtchss</mtchss>]
 </domain>
 [
 ...
 <domain="domainidentifier">
 [<imshss>imshss</imshss>]
 [<ltehss>ltehss</ltehss>]
 [<pcrf>pcrf</pcrf>]
 [<ocs>ocs</ocs>]
 [<ofcs>ofcs</ofcs>]
 [<aaa>aaa</aaa>]
 [<userdef1>userdef1</userdef1>]
 [<userdef2>userdef2</userdef2>]

Chapter 5
Read Domain

5-67

 [<mtchss>mtchss</mtchss>]
 </domain>
]
 </rset>
]
</readDomainResp>

Response Parameters

Table 5-32 <readDomainResp> Parameters (XML)

Parameter Description Value

lengthInBytes Number of bytes following to
form XML request. This is a 4
byte binary value.

0-4294967295

respName The name of the response
based on the original XML
request sent. Value is the
request name appended with
"Resp". For example, for the
<readDomain> request, the
response name is
<readDomainResp>.

Note: This is only present if
the resonly=”n” attribute
is set in the original request.

A string with 64 characters.

id Transaction ID value provided
in request and passed back in
the response.

0-4294967295

originalXMLRequest
(Optional)

The text of the original
<readDomain> XML
request that was sent.

Note: This is only present if
the resonly=”n” attribute
is set in the original request.

A string with 1 to 4096
characters.

error Error code that indicates
whether or not operation was
successfully executed.

0 for success, non-zero for
failure.

affected The number of routing entities
read.

0-10

description (Optional) A textual description
associated with the response.
This field may contain more
information as to why a
request failed.

A string with 1 to 1024
characters.

<rset> XML tag (Optional) Indicates rows of data are
returned. If no records are
being returned, this tag will not
be present.

Chapter 5
Read Domain

5-68

Table 5-32 (Cont.) <readDomainResp> Parameters (XML)

Parameter Description Value

domain The domain Identifier name,
which is used for configuring
external identifier by
associating them with local
identifier values. Must have
one or up to 10 domain
identifier values.

A string with 1 to 128
characters.

imshss (Optional) The name of the IMS HSS
destination.

A string with 1 to 32
characters.

ltehss (Optional) The name of the LTE HSS
destination.

A string with 1 to 32
characters.

pcrf (Optional) The name of the PCRF
destination.

A string with 1 to 32
characters.

ocs (Optional) The name of the OCS
destination.

A string with 1 to 32
characters.

ofcs (Optional) The name of the OFCS
destination.

A string with 1 to 32
characters.

aaa (Optional) The name of the AAA server
destination.

A string with 1 to 32
characters.

userdef1 (Optional) The name of the first user
defined destination.

A string with 1 to 32
characters.

userdef2 (Optional) The name of the second user
defined destination.

A string with 1 to 32
characters.

mtchss (Optional) The name of the MTC HSS
destination.

A string with 1 to 32
characters.

Response Error Codes

Table 5-33 lists common error codes for this command. See SDS Response Message Error
Codes for a complete list of error codes.

Table 5-33 <readDomainResp> Error Codes (XML)

Error Code Description

SUCCESS The update request was successfully completed.

DOMAIN_IDENTIFIER_NOT_FOUND Domain Identifier does not exist.

NO_DOMAIN_VAL No Domain Identifier value supplied.

TOO_MANY_ADDR Too many address values supplied.

5.19.3 Examples
Below are examples of how to use the <readDomain> request and likely response.

Read Domain

This example successfully reads 3 Domain Identifiers.

Chapter 5
Read Domain

5-69

Request:

<readDomain ent=”subscriberRouting” ns=”dsr” id=”101”>
 <domain>tekelec.com</domain>
 <domain>oracle.com</domain>
 <domain>cgbu-oracle.com</domain>
</readDomain>

Result:

<readDomainResp id=”101”>
 <res error=”0” affected=”3”/>
 <rset>
 <domain=”tekelec.com">
 <imshss>IMS_HSS_1</imshss>
 <ltehss>LTE_HSS_1</ltehss>
 <aaa>AAA_Texas</aaa>
 </domain>
 <domain=”oracle.com">
 <imshss>IMS_HSS_1</imshss>
 <ltehss>LTE_HSS_4</ltehss>
 <pcrf>PCRF_Ohio</pcrf>
 <aaa>AAA_Texas</aaa>
 </domain>
 <domain=”cgbu-oracle.com">
 <imshss>IMS_HSS_1</imshss>
 <ltehss>LTE_HSS_4</ltehss>
 <pcrf>PCRF_Ohio</pcrf>
 <aaa>AAA_Texas</aaa>
 </domain>
 </rset>
</readDomainResp>

Read Domain

This example successfully reads 2 Domain Identifiers, but other domain identifier is not
found.

Request:

<readDomain ent=”subscriberRouting” ns=”dsr” id=”102”>
 <domain>tekelec.com</domain>
 <domain>oracle.com</domain>
</readDomain>

Result:

<readDomainResp id=”102”>
 <res error=”0” affected=”2”/>
 <rset>
 <domain=”tekelec.com">
 <imshss>IMS_HSS_1</imshss>
 <ltehss>LTE_HSS_1</ltehss>
 <aaa>AAA_Texas</aaa>

Chapter 5
Read Domain

5-70

 </domain>
 <domain=”oracle.com">
 <imshss>IMS_HSS_1</imshss>
 <ltehss>LTE_HSS_4</ltehss>
 <pcrf>PCRF_Ohio</pcrf>
 <aaa>AAA_Texas</aaa>
 </domain>
 </rset>
</readDomainResp>

Read Domain (Failure)

This example fails because no Domain Identifiers are found.

Request:

<readDomain ent=”subscriberRouting” ns=”dsr” id=”103”>
 <domain>tekelec.com</domain>
 <domain>oracle.com</domain>
 <domain>cgbu-oracle.com</domain>
</readDomain>

Result:

<readDomainResp id=”103”>
 <res error=”2032” affected=”0” description=”domain id not found” />
</readDomainResp>

5.20 Message Flow Example Sessions
The following sections contain examples of exchanging messages between the Customer
Provisioning System (CPS) and the XML Data server process on the Active SDS server on
the Primary Provisioning Site.

All scenarios assume that a TCP/IP connection has already been established between the
client and SDS. The first column in the tables is the direction that the message is going. The
strings displayed in the Message column are the actual ASCII that would flow over the
connection, but do not include the 4 byte binary length which is sent before the XML itself.

The actual request and response messages are a series of characters with no extra spaces
or new line characters. New lines and extra spaces were added to these examples for
readability purposes.

5.20.1 Single Command Transaction
This example shows three request/response pairs that are exchanged between the CPS and
SDS. These requests are processed as "single command transactions," which means that
each request is immediately committed to the database. This example creates IMSI,
MSISDN, and External Identifier routing entities.

Chapter 5
Message Flow Example Sessions

5-71

Table 5-34 Single Command Transaction (XML)

Message Description

CPS—>SDS
<updateSubscriber
ent="subscriberRouting"
ns="dsr" resonly="n">
 <imsi>310910421000106</imsi>
 <imsi>310910421000307</imsi>
 <imsi>310910421000309</imsi>
 <msisdn>15634210106</msisdn>
 <msisdn>15634210107</msisdn>
 <ltehss>LTE_HSS_2</ltehss>
 <aaa>AAA_4</aaa>
</updateSubscriber>

Request to create 5
standalone routing entities - 3
IMSIs and 2 MSISDNs with an
LTE HSS and AAA server
destinations.

Note: Request is made to
include the original request in
the response.

Response to create subscriber
routing entities - success.
Affected rows = 5 (as 5 new
entries created for 3 IMSIs and
2 MSISDNs).

Note: As requested, the
original XML request is
included in the response.

CPS<—SDS
<updateSubscriberResp>
 <updateSubscriber
ent="subscriberRouting"
ns="dsr" resonly="n">
 <imsi>310910421000106</
imsi>
 <imsi>310910421000307</
imsi>
 <imsi>310910421000309</
imsi>
 <msisdn>15634210106</
msisdn>
 <msisdn>15634210107</
msisdn>
 <ltehss>LTE_HSS_2</ltehss>
 <aaa>AAA_4</aaa>
 </updateSubscriber>
 <res error="0" affected="5">
</updateSubscriberResp>

Chapter 5
Message Flow Example Sessions

5-72

Table 5-34 (Cont.) Single Command Transaction (XML)

Message Description

CPS—>SDS
<updateSubscriber
ent="subscriberRouting"
ns="dsr" resonly="n">
 <imsi>310910421000106</imsi>
 <imsi>310910421000307</imsi>
 <imsi>310910421000309</imsi>
 <msisdn>15634210106</msisdn>
 <msisdn>15634210107</
msisdn>
<externalId>test1@oracle.com</
externalId>
<externalId>test2@oracle.com</
externalId>
 <ltehss>LTE_HSS_2</ltehss>
 <mtchss>MTC_HSS_4</mtchss>
</updateSubscriber>

Request to create seven
standalone routing entities - 3
IMSIs, 2 MSISDNs, and 2
External Identifiers with LTE
HSS and MTC HSS server
destinations.

Note: Request is made to
include the original request in
the response.

Response to create
standalone routing entities -
success. Affected rows = 7 (as
7 new entries created for 3
IMSIs, 2 MSISDNs, and 2
External Identifiers).

Note: As requested, the
original XML request is
included in the response.

CPS<—SDS
<updateSubscriberResp>
 <updateSubscriber
ent="subscriberRouting"
ns="dsr" resonly="n">
 <imsi>310910421000106</
imsi>
 <imsi>310910421000307</
imsi>
 <imsi>310910421000309</
imsi>
 <msisdn>15634210106</
msisdn>
 <msisdn>15634210107</
msisdn>
<externalId>test1@oracle.com</
externalId>
<externalId>test2@oracle.com</
externalId>
 <ltehss>LTE_HSS_2</ltehss>
 <aaa>MTC_HSS_4</aaa>
 </updateSubscriber>
 <res error="0" affected="7">
</updateSubscriberResp>

Chapter 5
Message Flow Example Sessions

5-73

Table 5-34 (Cont.) Single Command Transaction (XML)

Message Description

CPS—>SDS
<updateSubscriber
ent="subscriberRouting"
ns="dsr">
 <imsi>310910421000106</imsi>
 <msisdn>15634210106</msisdn>
 <ltehss>LTE_HSS_5</ltehss>
</updateSubscriber>

Request to update existing
IMSI and MSISDN standalone
routing entities with a new LTE
HSS value.

Response to update
subscriber routing entities -
success. Affected rows = 2 (as
2 entries for an IMSI and
MSISDN were updated with
new LTE HSS value).

CPS<—SDS
<updateSubscriberResp>
 <res error="0"
affected="2"/>
</updateSubscriberResp>

CPS—>SDS
<updateSubscriber
ent="subscriberRouting"
ns="dsr">
 <imsi>310910421000106</imsi>
 <msisdn>15634210106</msisdn>
<externalId>test1@oracle.com</
externalId>
<externalId>test2@oracle.com</
externalId>
 <mtchss>MTC_HSS_5</mtchss>
</updateSubscriber>

Request to update existing
IMSI, MSISDN, and External
Identifier standalone routing
entities with a new MTC HSS
value.

Response to update
standalone routing entities -
success. Affected rows = 4 (as
4 entries for an IMSI,
MSISDN, and External
Identifier were updated with
new MTC HSS value).

CPS<—SDS
<updateSubscriberResp>
 <res error="0"
affected="4"/>
</updateSubscriberResp>

CPS—>SDS
<updateSubscriber
ent="subscriberRouting"
ns="dsr">
 <imsi>310910421000102</imsi>
 <ltehss>BAD_VALUE</ltehss>
</updateSubscriber>

Request to create a subscriber
routing entity with an invalid
LTE HSS destination value.

Request fails, as the
destination does not exist.

Chapter 5
Message Flow Example Sessions

5-74

Table 5-34 (Cont.) Single Command Transaction (XML)

Message Description

CPS<—SDS
<updateSubscriberResp>
 <res
description=”destination not
found” error="2006"
affected="0"/>
</updateSubscriberResp>

5.20.2 Multiple Commands Transaction Committed
This example issues several requests within one transaction, which is then committed
successfully.

Table 5-35 Multiple Commands Transaction Committed Message Flow Example (XML)

Message Description

CPS—>SDS
<startTransaction/>

Request to start a transaction
immediately.

Response start transaction -
success.

CPS<—SDS
<startTransactionResp>
 <res error="0" affected="0"/>
</startTransactionResp>

CPS—>SDS
<updateSubscriberDomain
ent="subscriberRouting"
ns="dsr">

<domainIdentifier>operator.com<
/domainIdentifier>
 <ltehss>LTE_HSS_11</ltehss>
</updateSubscriberDomain>

Request to create an Domain
Identifier - success.

CPS<—SDS
<updateSubscriberDomainResp>
 <res error="0" affected="1"/>
</updateSubscriberDomainResp>

Chapter 5
Message Flow Example Sessions

5-75

Table 5-35 (Cont.) Multiple Commands Transaction Committed Message Flow
Example (XML)

Message Description

CPS—>SDS
<updateSubscriber
ent="subscriberRouting"
ns="dsr">
 <imsi>310910421000444</imsi>
 <msisdn>15634210444</msisdn>

<externalId>test1@oracle.com</
externalId>
 <ltehss>LTE_HSS_1</ltehss>
</updateSubscriber>

Request to add new standalone
IMSI, MSISDN, and External
Identifier - success.

CPS<—SDS
<updateSubscriberResp>
<res error="0" affected="3”/>
</updateSubscriberResp>

CPS—>SDS
<updateSubscriber
ent="subscriberRouting"
ns="dsr">
 <imsi>310910421000555</imsi>
 <msisdn>15634210555</msisdn>

<externalId>test1@oracle.com</
externald>
 <ltehss>LTE_HSS_2</ltehss>
</updateSubscriber>

Request to update existing
standalone IMSI, MSISDN, and
External Identifier - success.

CPS<—SDS
<updateSubscriberResp>
 <res error="0" affected="3”/>
</updateSubscriberResp>

CPS—>SDS
<updateSubscriberNai
ent="subscriberRouting"
ns="dsr">
 <host>operator.com</host>
 <user>roger.brown</user>
 <ltehss>LTE_HSS_1</ltehss>
</updateSubscriberNai>

Request to update an NAI -
success.

Chapter 5
Message Flow Example Sessions

5-76

Table 5-35 (Cont.) Multiple Commands Transaction Committed Message Flow
Example (XML)

Message Description

CPS<—SDS
<updateSubscriberNaiResp>
 <res error="0" affected="1"/>
</updateSubscriberNaiResp>

CPS—>SDS
<commit/>

Request to commit the
transaction.

Response to commit transaction
- success. All updates were
successfully performed.CPS<—SDS

<commitResp>
 <res error="0" affected="0"/>
</commitResp>

5.20.3 Multiple Commands Transaction Rolled Back
This example issues several requests within one transaction which is rolled back.

Table 5-36 Multiple Commands Transaction Rolled Back Message Flow Example
(XML)

Message Description

CPS—>SDS
<startTransaction
timeout="10">
</startTransaction>

Request to start a transaction
within 10 seconds.

Response to start transaction -
success.

CPS<—SDS
<startTransactionResp>
 <res error="0"
affected="0"/>
</startTransactionResp>

Chapter 5
Message Flow Example Sessions

5-77

Table 5-36 (Cont.) Multiple Commands Transaction Rolled Back Message Flow
Example (XML)

Message Description

CPS—>SDS
<updateSubscriberDomain
ent="subscriberRouting"
ns="dsr">

<domainIdentifier>operat
or.com</
domainIdentifier>
 <ltehss>LTE_HSS_11</
ltehss>
</
updateSubscriberDomain>

Request to create an Domain
Identifier - success.

CPS<—SDS
<updateSubscriberDomainR
esp>
 <res error="0"
affected="1"/>
</
updateSubscriberDomainRe
sp>

CPS—>SDS
<updateSubscriber
ent="subscriberRouting"
ns="dsr">

<imsi>310910421000777</
imsi>
 <msisdn>15634210777</
msisdn>

<externalId>test1@oracle
.com</externalId>
 <ltehss>LTE_HSS_7</
ltehss>
</updateSubscriber>

Request to update existing
stand-alone IMSI, MSISDN, and
External Identifier - success.

CPS<—SDS
<updateSubscriberResp>
 <res error="0"
affected="3”/>
</updateSubscriberResp>

Chapter 5
Message Flow Example Sessions

5-78

Table 5-36 (Cont.) Multiple Commands Transaction Rolled Back Message Flow
Example (XML)

Message Description

CPS—>SDS
<updateSubscriberNai
ent="subscriberRouting"
ns="dsr">
 <host>operator.com</
host>
 <user>david.leno</
user>
 <ltehss>LTE_HSS_1</
ltehss>
</updateSubscriberNai>

Request to create an NAI -
success.

CPS<—SDS
<updateSubscriberNaiResp
>
 <res error="0"
affected="1"/>
</
updateSubscriberNaiResp>

CPS—>SDS
<rollback/>

Transaction is rolled back by the
client. None of the previous IMSI,
MSISDN or NAI entities will be
created.

Rollback is successful; no
creations/updates are made. At
this point the client could still
have sent commit if they wanted,
which would have resulted in the
2 IMSIs, 2 MSISDNs, and 1 NAI
being created.

CPS<—SDS
<rollbackResp>
 <res error="0"
affected="0"/>
</rollbackResp>

5.20.4 Block Transaction Committed
This example issues several requests within a block transaction. All of the requests succeed;
therefore, the transaction is automatically committed.

Chapter 5
Message Flow Example Sessions

5-79

Table 5-37 Block Transaction Committed Message Flow Example

Message Description

CPS—>SDS
<tx>
 <updateSubscriber
ent="subscriberRouting"
ns="dsr">
 <imsi>310910421000109</
imsi>
 <ltehss>LTE_HSS_2</
ltehss>
 </updateSubscriber>
 <updateSubscriber
ent="subscriberRouting"
ns="dsr">
 <msisdn>156342101009</
msisdn>
 <ltehss>LTE_HSS_2</
ltehss>
 </updateSubscriber>
 <updateSubscriber
ent="subscriberRouting"
ns="dsr">
 <imsi>310910421000110</
imsi>
 <msisdn>15634210110</
msisdn>
 <ltehss>LTE_HSS_6</
ltehss>
 </updateSubscriber>
 <updateSubscriber
ent="subscriberRouting"
ns="dsr">
 <ltehss>LTE_HSS_6</
ltehss>
 </updateSubscriber>
</tx>

A single request is sent
contain 3 different
<updateSubscriber>
requests for existing stand-
alone IMSI or MSISDN routing
entities.

Response indicates that 3
requests were within the
transaction. Each request
indicates that 1 row was
affected for each, and every
request was successful (as
error="0" in all response).

Chapter 5
Message Flow Example Sessions

5-80

Table 5-37 (Cont.) Block Transaction Committed Message Flow Example

Message Description

CPS<—SDS
<txResp nbreq="3">
 <updateSubscriberResp>
 <res error="0"
affected="1”/>
 </updateSubscriberResp>
 <updateSubscriberResp>
 <res error="0"
affected="1”/>
 </updateSubscriberResp>
 <updateSubscriberResp>
 <res error="0"
affected="2” description=
 “changed (imsi
310910421000110,
 dn 15634210110),
ltehss LTE_HSS_6“/>
 </updateSubscriberResp>
</txResp>

5.20.5 Block Transaction Rolled Back
This example issues several requests within a block transaction. One of the requests fails;
therefore, the transaction is automatically rolled back.

Chapter 5
Message Flow Example Sessions

5-81

Table 5-38 Block Transaction Rolled Back Message Flow Example

Message Description

CPS—>SDS
<tx resonly=”n”>
 <updateSubscriber
ent="subscriberRouting"
ns="dsr">

<imsi>310910421000111</
imsi>
 <ltehss>LTE_HSS_2</
ltehss>
 </updateSubscriber>
 <updateSubscriber
ent="subscriberRouting"
ns="dsr">
 <msisdn>156342101011</
msisdn>
 <ltehss>LTE_HSS_2</
ltehss>
 </updateSubscriber>
 <updateSubscriber
ent="subscriberRouting"
ns="dsr">

<imsi>310910421000112</
imsi>
 <ltehss>LTE_HSS_99</
ltehss>
 </updateSubscriber>
 <updateSubscriber
ent="subscriberRouting"
ns="dsr">
 <msisdn>15634210112</
msisdn>
 <ltehss>LTE_HSS_6</
ltehss>
 </updateSubscriber>
</tx>

A single request is sent
containing 4 different
updateSubscriber requests for
existing standalone IMSI or
MSISDN routing entities. The
request is made to include
each request in the response
for the entire transaction
(indicated by the resonly="n"
attribute).

Response to create subscriber
routing entities - success.
Affected rows = 1 (as 1 NAI
entry was updated).

The first two requests that
were successful, indicate no
error and the correct number
of affected rows. The third
request that fails gives the
correct error and no affected
rows. The fourth request that
has not been executed has an
error code indicating
NOT_PROCESSED. All
requests are rolled back.

Chapter 5
Message Flow Example Sessions

5-82

Table 5-38 (Cont.) Block Transaction Rolled Back Message Flow Example

Message Description

CPS<—SDS
<txResp nbreq="4">
 <updateSubscriberResp>
 <updateSubscriber
ent="subscriberRouting"
ns="dsr">

<imsi>310910421000111</
imsi>
 <ltehss>LTE_HSS_2</
ltehss>
 </updateSubscriber>
 <res error="0"
affected="1"/>
 </updateSubscriberResp>
 <updateSubscriberResp>
 <updateSubscriber
ent="subscriberRouting"
ns="dsr">

<msisdn>156342101011</
msisdn>
 <ltehss>LTE_HSS_2</
ltehss>
 </updateSubscriber>
 <res error="0"
affected="1"/>
 </updateSubscriberResp>
 <updateSubscriberResp>
 <updateSubscriber
ent="subscriberRouting"
ns="dsr">

<imsi>310910421000112</
imsi>
 <ltehss>LTE_HSS_99</
ltehss>
 </updateSubscriber>
 <res
description=”destination
not found” error="2006"
affected="0"/>
 </updateSubscriberResp>
 <updateSubscriberResp>
 <updateSubscriber
ent="subscriberRouting"
ns="dsr">

<msisdn>15634210112</

Chapter 5
Message Flow Example Sessions

5-83

Table 5-38 (Cont.) Block Transaction Rolled Back Message Flow Example

Message Description

msisdn>
 <ltehss>LTE_HSS_6</
ltehss>
 </updateSubscriber>
 <res error="1"
affected="0"/>
 </updateSubscriberResp>
</txResp>

Chapter 5
Message Flow Example Sessions

5-84

A
SDS Response Message Error Codes

This section describes the XML/SOAP error codes that are returned by the XDS/SOAP
server.

A.1 SDS Response Message Error Codes
XML/SOAP error codes are returned by the XDS/SOAP server in the error attribute
parameter of the <requestResp> messages (see XML Response Messages) or in the
SOAP Response message (see SOAP Response Messages). The error parameter of a
response message indicates the success or failure of a request.

The complete set of response error codes and their associated values are defined in the
following table.

Table A-1 SDS Response Message Error Codes

Error Code Value Description

SUCCESS 0000 Request was successful.

NOT_PROCESSED 0001 Not processed. The request was within a block
transaction, and was not processed due to an error
with another request within the same block
transaction.

NO_RESPONSE 1000 A timeout was exceeded without a response being
received. Retry the command or reconnect.

INTERNAL_ERROR 1001 An internal error occurred. Contact My Oracle
Support.

NOT_CONNECTED 1002 The message was not sent because the connection is
closed.

ALREADY_CONNECTED 1003 A connect message failed because already
connected.

PARSE_FAILED 1004 The message is in an invalid format and cannot be
parsed. This can be caused by a missing symbol or
misspelled keyword, for example.

WRITE_UNAVAILABLE 1005 Another client already has a transaction open. This
will only be returned to clients who do have write
access permissions.

NO_WRITE_PERMISSION 1006 The client making the connection does not have write
access permissions.

STANDBY_SIDE 1008 The commit failed because this is the Standby server,
not the Active server.

NO_ACTIVE_TXN 1009 A read or write transaction is not currently open for
this connection.

ACTIVE_TXN 1010 A read or write transaction is already open on this
connection, or an open transaction was aborted prior
to terminating the connection.

WRITE_IN_READ_TXN 1011 A write command failed because the current
transaction is read-only.

A-1

Table A-1 (Cont.) SDS Response Message Error Codes

Error Code Value Description

INVALID_VALUE 1012 One of the fields in the request has a invalid value.

NOT_FOUND 1013 The command failed because the file or connection
could not be found.

CONFLICT_FOUND 1014 The command failed because of a conflict or
incompatibility between otherwise individually
acceptable arguments.

ITEM_EXISTS 1015 A command to create or update a database entry was
not executed because an entry with the same keys
already exists.

PARTIAL_SUCCESS 1016 The request has succeeded, but this is one of several
responses.

This error code is used for indicating status while
processing import files.

NO_UPDATES 1017 All of the changes were already in the database.

INTERRUPTED 1018 The command was interrupted and did not finish.

BAD_ARGS 1019 The command failed because of invalid, missing, or
otherwise unacceptable arguments.

CONNECTION_DENIED 1020 The connection is not permitted for the reason shown
in the error.

UNKNOWN_VERSION 1023 The version given is not compatible with the database
server.

DURABILITY_TIMEOUT 1024 The update was not made durable in the database
within the configured time interval.

UNIMPLEMENTED 1025 This command is not implemented.

BAD_IMPORT_CMD 1028 The command is not supported by the Import
operation.

TXN_TOO_BIG 1029 Transaction too big (more than the configured
maximum number of requests). The maximum number
of requests within a transaction is configured on the
SDS GUI. We recommend you see the SDS Online
Help for more information.

DURABILITY_DEGRADED 1030 The system's transaction durability is degraded and
updates will not be accepted until the transaction
durability level is restored. Contact My Oracle Support.
The transaction durability level can be temporarily
adjusted until the problem is resolved. The associated
request should be resent after durability is restored or
manually adjusted since it has not been committed or
is no longer committed to the database due to a
rollback when the system durability became degraded.

DB_EXCEPTION 1031 An unexpected exception was thrown during the
database operation. Contact My Oracle Support.

MAX_DN_LIMIT 1033 The type of object being created (MSISDN, IMSI,
Destination, etc.)has reached the maximum number
allowed in the database.

MAX_SUB_MSISDN_LIMIT 1036 The maximum allowed number of MSISDNs
associated with a Subscriber would have been
exceeded.

MAX_SUB_IMSI_LIMIT 1037 The maximum allowed number of IMSIs associated
with a Subscriber would have been exceeded.

Appendix A
SDS Response Message Error Codes

A-2

Table A-1 (Cont.) SDS Response Message Error Codes

Error Code Value Description

PROV_PROHIBITED 1051 Database access has been manually disabled.

NPA_SPLIT_NOT_ACTIVE 1061 Completion is only allowed when an NPA Split is
Active

NPA_SPLIT_ACTIVE 1062 This action is not allowed when an NPA Split is Active.

NPA_SPLIT_COMPLETE 1063 No other action (besides deletion) is allowed when an
NPA Split is Completed.

MPA_SPLIT_LIMIT 1064 The number of NPA Split objects has reached the
maximum number allowed in the database.

DEST_TYPE_MISMATCH 1065 This Destination Type is different from the Type of the
Destination in the database.

IN_USE 1066 This action is invalid because the object is currently
being used.

INV_REQUEST_NAME 2001 The XML request name does not indicate a valid
request.

INVALID_XML 2002 The request does not contain a valid XML data
structure and cannot be parsed.

MISSING_PARAMETER 2003 A mandatory parameter is missing.

INVALID_MULT_INST 2004 Multiple instances of a parameter that only allows a
single instance has occurred.

UNKNOWN_PARAM_NAME 2005 The specified parameter name is unknown for this
request.

DEST_NOT_FOUND 2006 The specified destination name does not exist.

IMSI_NOT_FOUND 2007 The specified IMSI does not exist.

MSISDN_NOT_FOUND 2008 The specified MSISDN does not exist.

NAI_NOT_FOUND 2009 The specified NAI (host/user) does not exist.

NAI_HOST_NOT_FOUND 2010 The specified host name does not exist.

TXN_TIMED_OUT 2011 The Transaction that was in progress has timed out,
and automatically rolled back.

TOO_MANY_ADDR 2012 Too many IMSI/MSISDN routing entities were
specified in the request.

NO_DEST_VAL 2013 At least one destination value must be specified.

NO_ADDR_VAL 2014 No IMSI/MSISDN value and no Account ID value was
supplied.

TOO_MANY_NAI 2015 Too many NAI routing entities were specified.

NO_NAI_VAL 2016 No NAI value was supplied.

DEST_TYPE_MISMATCH 2017 Destination has a different destination type than the
desired destination type.

INVALID_ARG 2018 The arguments are not valid. Each individual value is
valid, but the combination of specified values and
database values is not allowed.

INSTANCE_LIMIT 2019 Operation would exceed the maximum number of
allowed records in the table.

INV_REQ_IN_BLOCK_TX 2020 An invalid request has been sent in a block transaction
(for example, startTransaction, commit, or rollback).

INV_REQ_IN_NORMAL_TX 2021 An invalid request has been sent in a normal
transaction (for example, a block transaction).

SUBSCRIBER_NOT_FOUND 2022 The specified subscriber does not exist.

Appendix A
SDS Response Message Error Codes

A-3

Table A-1 (Cont.) SDS Response Message Error Codes

Error Code Value Description

MULTIPLE_SUBSCRIBERS 2023 The specified parameters refer to multiple subscribers.

SUBSCRIBER_TOO_BIG 2024 The resulting subscriber would exceed the 6 IMSI or 6
MSISDN limit.

ACCTID_UPDATE_PROHIBITE
D

2025 An attempt was made to change an accountId without
specifying the <deleteAccountId> tag.

ROUTE_TYPE_MISMATCH 2026 Standalone and subscriber routes are not allowed in
same command.

DEL_ROUTE_NOT_PERMITTE
D

2027 Cannot delete the last route from a subscriber.

NO_ROUTES_SPECIFIED 2028 At least one MSISDN or IMSI must be specified.

ROUTE_DEST_MISMATCH 2029 Specified routes have different destinations.

Appendix A
SDS Response Message Error Codes

A-4

B
XML/SOAP Interface System Variables

This section describes the XML/SOAP interfaces that have a set of system variables that
affect the operation as it runs.

B.1 XML/SOAP Interface System Variables
The XML/SOAP Interfaces have a set of system variables that affect its operation as it runs.
XML/SOAP Interface System variables (shown below in Table B-1) can be set via the SDS
GUI and can be changed at runtime to effect dynamic server reconfiguration. We recommend
you see the SDS Online Help for more information.

Table B-1 XML/SOAP Interface System Variables

Parameter Description

XML Interface Port XML Interface TCP (unsecure) Listening Port. The
TCP listening port can be disabled by setting it to
0. NOTE: Changes to the TCP listening port do
not take affect until the 'xds' process is restarted.
Also, you must specify a different port than the
SOAP interface. DEFAULT = 5875; RANGE =
0-65535

SOAP Interface Port SOAP Interface TCP Listening Port. The TCP
listening port can be disabled by setting it to 0.
NOTE: Changes to the TCP listening port do not
take affect until the 'xds' process is restarted. Also,
you must specify a different port than the XML
interface. DEFAULT = 5876 (when SOAP Secure
Mode is set to UNSECURE) or 5877 (when SOAP
Secure Mode is set to SECURE) RANGE =
0-65535

XML Interface Idle Timeout The maximum time (in seconds) that an open XML
connection will remain active without a request
being sent, before the connection is dropped.
DEFAULT = 1200; RANGE = 1-86400

SOAP Interface Idle Timeout The maximum time (in seconds) that an open
SOAP connection will remain active without a
request being sent, before the connection is
dropped. DEFAULT = 1200; RANGE = 1-86400

Maximum XML Connections Maximum number of simultaneous XML Interface
client connections. DEFAULT = 120; RANGE =
1-120

Maximum SOAP Connections Maximum number of simultaneous SOAP Interface
client connections. DEFAULT = 120; RANGE =
1-120

B-1

Table B-1 (Cont.) XML/SOAP Interface System Variables

Parameter Description

SOAP Secure Mode Whether the SOAP Interface operates in secure
mode (using SSL), or unsecure mode (plain text).
NOTE: Changes to the SOAP Secure Mode do not
take affect until the 'xds' process is restarted.
DEFAULT = UNSECURE

Allow Connections* Whether or not to allow incoming connections on
the XML/SOAP Interface. DEFAULT = ALLOWED

Max Transaction Size* Maximum number of database manipulation
commands per transaction. DEFAULT = 50;
RANGE = 10-1000

Maximum Transaction Lifetime The maximum time (in seconds) that a transaction
can remain open before automatically being rolled
back if a commit or rollback is not explicitly
performed. Timeout can be disabled by setting to
0. DEFAULT=60; RANGE = 0-3600

Remote Import Mode* Whether updates are allowed (Non-Blocking) or
not allowed (Blocking) on all XDS connections
while the remote import operation is in progress.
In blocking mode, XML and SOAP provisioning
requests will be rejected if a bulk import is in
operation. In non-blocking mode, XML and SOAP
provisioning requests will be allowed as normal.
DEFAULT = NON-BLOCKING

Export Mode* Whether updates are allowed (Non-Blocking) or
not allowed (Blocking) on all XDS connections
while the export operation is in progress. In
blocking mode, XML and SOAP provisioning
requests will be rejected if a bulk export is in
operation. In non-blocking mode, XML and SOAP
provisioning requests will be allowed as normal.
DEFAULT = NON-BLOCKING

Transaction Durability Timeout* The amount of time (in seconds) allowed between
a transaction being committed and it becoming
durable. If Transaction Durability Timeout lapse,
DURABILITY_TIMEOUT response is sent to the
originating client. The associated request should
be resent to ensure that the request was
committed. DEFAULT = 5; RANGE = 2-3600

Note:

Parameters labeled with a “*” are existing system variables defined and used
by other components.

Appendix B
XML/SOAP Interface System Variables

B-2

C
Database Object Model

This section describes the database object model and shows all tables associated with SDS
provisioning.

C.1 Database Object Model
Figure C-1 shows the database object model for subscriber-related data. All of the tables are
available to the user.

Figure C-1 SDS Provisioning Database Object Model

MsisdnBlacklist

Table C-1 MsisdnBlacklist Table Attributes

Attribute Description

msisdn A unique string of 8-15 decimal digits.

C-1

ImsiBlacklist

Table C-2 ImsiBlacklist Table Attributes

Attribute Description

imsi A unique string of 10-15 decimal digits.

Msisdn

Table C-3 Msisdn Table Attributes

Attribute Description

msisdn A unique string of 8-15 decimal digits.

List of Destinations as per Table C-19.

Imsi

Table C-4 Imsi Table Attributes

Attribute Description

imsi A unique string of 8-15 decimal digits.

List of Destinations as per Table C-19.

MsisdnPrefix

Table C-5 MsisdnPrefix Table Attributes

Attribute Description

msisdnPrefix A unique string of 1-15 decimal digits. Can
have overlapping prefix values.

List of Destinations as per Table C-19.

ImsiPrefix

Table C-6 ImsiPrefix Table Attributes

Attribute Description

imsiPrefix A unique string of 1-15 decimal digits. Can
have overlapping prefix values.

List of Destinations as per Table C-19.

Appendix C
Database Object Model

C-2

NaiUser

Table C-7 NaiUser Table Attributes

Attribute Description

user A string of 1-64 characters for the NAI User Name.

hostId Index to an existing NAI Host record. The user/
hostId combination must be unique.

List of Destinations as per Table C-19.

WildcardNaiUser

Table C-8 WildcardNaiUser Table Attributes

Attribute Description

wildcardUser A string of 1-64 characters for the wild-carded NAI
User Name.

hostId Index to an existing NAI Host record. The
wildcardUser/hostId combination must be unique.

List of Destinations as per Table C-19.

Destination

Table C-9 Destination Table Attributes

Attribute Description

name A unique string of 1-32 characters to identify the
Destination.

id A unique, generated number used to identify a
Destination record

type Destination type

fqdn A 1-255 character string for the Diameter FQDN
for the Destination. The value can be null.

realm A 1-255 character string for the Diameter Realm
for the Destination. The value can be null.

destinationMap

Table C-10 DestinationMap Table Attributes

Attribute Description

name A unique string of 1-32 characters to identify an
existing Destination record.

service A string of 8-15 decimal digits that contains the
E.164 node address of an HLR Router.

Appendix C
Database Object Model

C-3

NaiHost

Table C-11 NaiHost Table Attributes

Attribute Description

host A unique string of 1-64 characters for the NAI
Host Name.

id A unique, generated number used to identify a
NaiHost record.

Identifiers

Table C-12 DomainIdentifier Table Attributes

Attribute Description

DomainIdentifier A UTF8 string of 1-128 characters

DomainId A unique, generated number used to identify a
Domain Identifier record.

domainToLocalRefCount Reference count of how many local identifiers
are referring to this Domain

List of Destinations as per Table C-19.

Table C-13 LocalIdentifier Table Attributes

Attribute Description

LocalIdentifier A UTF8 string of 1-128 characters

DomainId A unique, generated number used to identify a
Domain Identifier record.

SubId A internal, numeric Subscriber ID. This number
is assigned by SDS software.

List of Destinations as per Table C-19.

Subscriber

Table C-14 Subscriber Table Attributes

Attribute Description

subIdKey A unique string of 1-10 decimal digits. This
string is based on the numeric subId value.

subId A unique, internal, numeric Subscriber ID. This
number is assigned by SDS software.

accountId An optional unique string of 6-26 decimal
digits. This value is assigned by the customer.

msisdnList[6] A list of MSISDN values for the Subscriber.
Each MSISDN value must be 8-15 decimal
digits.

imsiList[6] A list of IMSI values for the Subscriber. Each
IMSI value must be 10-15 decimal digits.

Appendix C
Database Object Model

C-4

Table C-14 (Cont.) Subscriber Table Attributes

Attribute Description

numMsisdn Number of MSISDN values defined for the
Subscriber.

numImsi Number of IMSI values defined for the
Subscriber.

AccountToSubscriber

Table C-15 AccountToSubscriber Table Attributes

Attribute Description

accountId An optional unique string of 6-26 decimal digits.
This value is assigned by the customer.

subId An internal, numeric Subscriber ID. This number is
assigned by SDS software.

MsisdnToSubscriber

Table C-16 MsisdnToSubscriber Table Attributes

Attribute Description

msisdn A unique string of 8-15 decimal digits

subId An internal, numeric Subscriber ID. This number is
assigned by SDS software.

ImsiToSubscriber

Table C-17 ImsiToSubscriber Table Attributes

Attribute Description

imsi A unique string of 10-15 decimal digits.

subId An internal, numeric Subscriber ID. This number is
assigned by SDS software.

External Identifier

Table C-18 SubscriberToExternalId Table Attributes

Attribute Description

subId A internal numeric Subscriber ID. This number is
assigned by SDS software.

Appendix C
Database Object Model

C-5

Table C-18 (Cont.) SubscriberToExternalId Table Attributes

Attribute Description

ExternalIdentifierList A string comprising of multiple domainId's and
LocalId's up to 2580 characters, assigned to given
subscriber. The string could comprise of 10
External Identifier values for Subscriber. For
example:
domainId1>locId1,locId2,locId3,locId4;domainId2>
locId4,locId5,locId6,locId7

Destination List

Table C-19 Destination List for Routing Entities

Attribute Description

destIdImsHss Index to an existing IMS HSS Destination
record (with type= imsHss) or 0 (for none)

destIdLteHss Index to an existing LTE HSS Destination
record (with type= lteHss) or 0 (for none)

destIdMtcHss Index to an existing MTC HSS Destination
record (with type= mtcHss) or 0 (for none)

destIdPcrf Index to an existing PCRF Destination record
(with type= pcrf) or 0 (for none)

destIdOcs Index to an existing OCS Destination record
(with type= ocs) or 0 (for none)

destIdOfcs Index to an existing OFCS Destination record
(with type= ofcs) or 0 (for none)

destIdAaa Index to an existing AAA Destination record
(with type= aaa) or 0 (for none)

destIdUserDef1 Index to an existing UserDef1 Destination
record (with type= userDef1) or 0 (for none)

destIdUserDef2 Index to an existing UserDef2 Destination
record (with type= userDef2) or 0 (for none)

Appendix C
Database Object Model

C-6

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Revision History
	1.2 Overview
	1.3 Scope and Audience
	1.4 Manual Organization
	1.5 My Oracle Support

	2 System Architecture
	2.1 System Architecture Overview
	2.2 SDS/HLRR Architecture Overview
	2.3 Customer IT and Ops
	2.3.1 Web GUI
	2.3.2 Provisioning System
	2.3.3 Query System
	2.3.4 FTP Server
	2.3.5 SNMP Manager

	2.4 Primary Provisioning Site
	2.4.1 Active SDS Server
	2.4.2 Standby SDS Server
	2.4.3 Query Server

	2.5 Disaster Recovery Provisioning Site
	2.6 DP SOAM
	2.7 Data Processors

	3 Interface Description
	3.1 Provisioning Interface Overview
	3.2 Customer Provisioning System to SDS Overview
	3.2.1 XML Data Server
	3.2.2 SOAP Server
	3.2.3 Provisioning Clients

	3.3 Security
	3.3.1 Client Server IP Address White List
	3.3.2 Secure Connection Using TLS
	3.3.2.1 TLS Certificates and Public/Private Key Pairs
	3.3.2.2 Supported TLS Cipher Suites

	3.4 Multiple Session Connectivity
	3.5 Request Queue Management
	3.6 Syncronous/Asyncronous Mode
	3.7 Message Processing (Transactions)
	3.7.1 Transaction Modes
	3.7.1.1 Normal Database Transaction Mode
	3.7.1.2 Block Transaction Mode
	3.7.1.3 Single Database Transaction Mode

	3.7.2 ACID-Compliant Transactions
	3.7.2.1 Atomicity
	3.7.2.2 Consistency
	3.7.2.3 Isolation
	3.7.2.4 Durability

	3.8 Data Import
	3.8.1 Provisioning Data Import (XML)
	3.8.2 Provisioning Data Import (CSV)
	3.8.2.1 CSV Data Import for Subscribers

	3.9 Data Export
	3.10 Relaying Data to the HLR Router
	3.10.1 PDB Relay
	3.10.2 Bulk Load

	3.11 Measurements
	3.12 Key Performance Indicators
	3.13 Alarms
	3.14 Events

	4 SOAP Message Definitions
	4.1 Message Conventions
	4.2 SOAP Request Messages
	4.3 SOAP Response Messages
	4.3.1 Successful SOAP Subscriber Commands

	4.4 List of Request Operations
	4.5 Start Transaction
	4.5.1 Request
	4.5.2 Response
	4.5.3 Examples

	4.6 Commit Transaction
	4.6.1 Request
	4.6.2 Response
	4.6.3 Examples

	4.7 Rollback Transaction
	4.7.1 Request
	4.7.2 Response
	4.7.3 Examples

	4.8 Insert Subscriber
	4.8.1 Subscriber and Routing Data Concepts
	4.8.2 Insert Subscriber Request
	4.8.3 Insert Subscriber Response
	4.8.4 Insert Subscribers Examples

	4.9 Update Subscriber
	4.9.1 Subscriber and Routing Data
	4.9.2 Request
	4.9.3 Response
	4.9.4 Examples

	4.10 Delete Subscriber
	4.10.1 Request
	4.10.2 Response
	4.10.3 Examples

	4.11 Read Subscriber
	4.11.1 Request
	4.11.2 Response
	4.11.3 Examples

	4.12 Update Subscriber NAI
	4.12.1 Request
	4.12.2 Response
	4.12.3 Examples

	4.13 Delete Subscriber NAI
	4.13.1 Request
	4.13.2 Response
	4.13.3 Examples

	4.14 Read Subscriber NAI
	4.14.1 Request
	4.14.2 Response
	4.14.3 Examples

	4.15 Message Flow Example Sessions
	4.15.1 Single Command Transaction
	4.15.2 Multiple Commands Transaction Committed
	4.15.3 Multiple Commands Transaction Rolled Back

	5 XML Message Definitions
	5.1 Message Conventions
	5.2 XML-based Interface
	5.3 Transaction ID
	5.4 XML Response Messages
	5.4.1 Update and Delete Subscriber Command

	5.5 Supported Request Messages
	5.6 Start Transaction
	5.6.1 Request
	5.6.2 Response
	5.6.3 Examples

	5.7 Commit Transaction
	5.7.1 Request
	5.7.2 Response
	5.7.3 Examples

	5.8 Rollback Transaction
	5.8.1 Request
	5.8.2 Response
	5.8.3 Examples

	5.9 Block Transactions
	5.9.1 Request
	5.9.2 Response
	5.9.3 Examples

	5.10 Insert Subscriber
	5.11 Update Subscriber
	5.11.1 Subscriber and Routing Data
	5.11.2 Request
	5.11.3 Response
	5.11.4 Examples

	5.12 Delete Subscriber
	5.12.1 Request
	5.12.2 Response
	5.12.3 Examples

	5.13 Read Subscriber
	5.13.1 Request
	5.13.2 Response
	5.13.3 Examples

	5.14 Update Subscriber NAI
	5.14.1 Request
	5.14.2 Response
	5.14.3 Examples

	5.15 Delete Subscriber NAI
	5.15.1 Request
	5.15.2 Response
	5.15.3 Examples

	5.16 Read Subscriber NAI
	5.16.1 Request
	5.16.2 Response
	5.16.3 Examples

	5.17 Update Domain
	5.17.1 Request
	5.17.2 Response
	5.17.3 Examples

	5.18 Delete Domain
	5.18.1 Request
	5.18.2 Response
	5.18.3 Examples

	5.19 Read Domain
	5.19.1 Request
	5.19.2 Response
	5.19.3 Examples

	5.20 Message Flow Example Sessions
	5.20.1 Single Command Transaction
	5.20.2 Multiple Commands Transaction Committed
	5.20.3 Multiple Commands Transaction Rolled Back
	5.20.4 Block Transaction Committed
	5.20.5 Block Transaction Rolled Back

	A SDS Response Message Error Codes
	A.1 SDS Response Message Error Codes

	B XML/SOAP Interface System Variables
	B.1 XML/SOAP Interface System Variables

	C Database Object Model
	C.1 Database Object Model

